BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 9724461)

  • 1. Expression and distribution of GABA and GABAB-receptor in the rat adrenal gland.
    Kato K; Nakagawa C; Murabayashi H; Oomori Y
    J Anat; 2014 Feb; 224(2):207-15. PubMed ID: 24252118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gap junctions mediate electrical signaling and ensuing cytosolic Ca2+ increases between chromaffin cells in adrenal slices: A role in catecholamine release.
    Martin AO; Mathieu MN; Chevillard C; Guérineau NC
    J Neurosci; 2001 Aug; 21(15):5397-405. PubMed ID: 11466411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of muscarinic receptor-mediated excitation in spontaneously hypertensive rat adrenal medullary chromaffin cells.
    Inoue M; Harada K
    Auton Neurosci; 2023 Sep; 248():103108. PubMed ID: 37467550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Gd3+ on bradykinin-induced catecholamine secretion from bovine adrenal chromaffin cells.
    Bales PJ; Zerbes M; Powis DA; Marley PD
    Br J Pharmacol; 1999 Dec; 128(7):1435-44. PubMed ID: 10602322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neonatal intermittent hypoxia impairs neuronal nicotinic receptor expression and function in adrenal chromaffin cells.
    Souvannakitti D; Kuri B; Yuan G; Pawar A; Kumar GK; Smith C; Fox AP; Prabhakar NR
    Am J Physiol Cell Physiol; 2010 Aug; 299(2):C381-8. PubMed ID: 20664070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ADP-mediated Modulation of Intracellular Calcium Responses in Chromaffin Cells: The Role of Ectonucleoside Triphosphate Diphosphohydrolase 2 on Rat Adrenal Medulla Function.
    Maesawa S; Yokoyama T; Sakanoue W; Yamamoto Y; Hirakawa M; Shiraishi H; Sato K; Saino T
    J Histochem Cytochem; 2024 Jan; 72(1):41-60. PubMed ID: 38158780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinic receptor Alpha7 expression during mouse adrenal gland development.
    Gahring LC; Myers E; Palumbos S; Rogers SW
    PLoS One; 2014; 9(8):e103861. PubMed ID: 25093893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of sulfhydryl reagents with K+ transport in adrenal chromaffin granules.
    Szewczyk A; Lobanov NA; Nowotny M; Nałecz MJ
    Acta Neurobiol Exp (Wars); 1997; 57(4):329-32. PubMed ID: 9519550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromaffin Cells in the Mammalian Adrenomedullary Tissue: Ultrastructural Aspects of Stimulus-Secretion Coupling - A Tribute to Odile Grynszpan-Winograd (1938-2023).
    Guérineau NC; Aunis D
    Neuroendocrinology; 2024; 114(6):511-516. PubMed ID: 38626738
    [No Abstract]   [Full Text] [Related]  

  • 10. Developmental heterogeneity of embryonic neuroendocrine chromaffin cells and their maturation dynamics.
    Akkuratova N; Faure L; Kameneva P; Kastriti ME; Adameyko I
    Front Endocrinol (Lausanne); 2022; 13():1020000. PubMed ID: 36237181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion.
    Harada K; Matsuoka H; Miyata H; Matsui M; Inoue M
    Br J Pharmacol; 2015 Mar; 172(5):1348-59. PubMed ID: 25393049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental and stress-induced remodeling of cell–cell communication in the adrenal medullary tissue.
    Guérineau NC; Desarménien MG
    Cell Mol Neurobiol; 2010 Nov; 30(8):1425-31. PubMed ID: 21061165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nicotinic and muscarinic components in acetylcholine stimulation of porcine adrenal medullary cells.
    Nassar-Gentina V; Catalán L; Luxoro M
    Mol Cell Biochem; 1997 Apr; 169(1-2):107-13. PubMed ID: 9089637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial localization of the stimulus-induced rise in cytosolic Ca2+ in bovine adrenal chromaffin cells. Distinct nicotinic and muscarinic patterns.
    Cheek TR; O'Sullivan AJ; Moreton RB; Berridge MJ; Burgoyne RD
    FEBS Lett; 1989 Apr; 247(2):429-34. PubMed ID: 2653866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholinesterase activity, and neurofilament protein, and catecholamine synthesizing enzymes immunoreactivities in the mouse adrenal gland during postnatal development.
    Iwasa K; Oomori Y; Tanaka H
    J Vet Med Sci; 1999 Jun; 61(6):621-9. PubMed ID: 10423683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscarinic receptors in adrenal chromaffin cells: physiological role and regulation of ion channels.
    Inoue M; Matsuoka H; Harada K; Kao LS
    Pflugers Arch; 2018 Jan; 470(1):29-38. PubMed ID: 28762161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+ -Ca2+ exchanger expression and its modulation.
    Kimura J; Ono T; Sakamoto K; Ito E; Watanabe S; Maeda S; Shikama Y; Yatabe MS; Matsuoka I
    Biol Pharm Bull; 2009 Mar; 32(3):325-31. PubMed ID: 19252272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscarinic and nicotinic receptor-mediated Ca2+ dynamics in rat adrenal chromaffin cells during development.
    Oomori Y; Habara Y; Kanno T
    Cell Tissue Res; 1998 Oct; 294(1):109-23. PubMed ID: 9724461
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.