These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 9724519)
1. Cysteine reactivity and oligomeric structures of phospholamban and its mutants. Karim CB; Stamm JD; Karim J; Jones LR; Thomas DD Biochemistry; 1998 Sep; 37(35):12074-81. PubMed ID: 9724519 [TBL] [Abstract][Full Text] [Related]
2. Direct spectroscopic detection of molecular dynamics and interactions of the calcium pump and phospholamban. Thomas DD; Reddy LG; Karim CB; Li M; Cornea R; Autry JM; Jones LR; Stamm J Ann N Y Acad Sci; 1998 Sep; 853():186-94. PubMed ID: 10603946 [TBL] [Abstract][Full Text] [Related]
3. Co-reconstitution of phospholamban mutants with the Ca-ATPase reveals dependence of inhibitory function on phospholamban structure. Reddy LG; Autry JM; Jones LR; Thomas DD J Biol Chem; 1999 Mar; 274(12):7649-55. PubMed ID: 10075652 [TBL] [Abstract][Full Text] [Related]
4. Synthetic null-cysteine phospholamban analogue and the corresponding transmembrane domain inhibit the Ca-ATPase. Karim CB; Marquardt CG; Stamm JD; Barany G; Thomas DD Biochemistry; 2000 Sep; 39(35):10892-7. PubMed ID: 10978176 [TBL] [Abstract][Full Text] [Related]
5. Mutation and phosphorylation change the oligomeric structure of phospholamban in lipid bilayers. Cornea RL; Jones LR; Autry JM; Thomas DD Biochemistry; 1997 Mar; 36(10):2960-7. PubMed ID: 9062126 [TBL] [Abstract][Full Text] [Related]
6. Role of cysteine residues in structural stability and function of a transmembrane helix bundle. Karim CB; Paterlini MG; Reddy LG; Hunter GW; Barany G; Thomas DD J Biol Chem; 2001 Oct; 276(42):38814-9. PubMed ID: 11477077 [TBL] [Abstract][Full Text] [Related]
7. Electron paramagnetic resonance reveals a large-scale conformational change in the cytoplasmic domain of phospholamban upon binding to the sarcoplasmic reticulum Ca-ATPase. Kirby TL; Karim CB; Thomas DD Biochemistry; 2004 May; 43(19):5842-52. PubMed ID: 15134458 [TBL] [Abstract][Full Text] [Related]
8. Probing the oligomeric state of phospholamban variants in phospholipid bilayers from solid-state NMR measurements of rotational diffusion rates. Hughes E; Clayton JC; Middleton DA Biochemistry; 2005 Mar; 44(10):4055-66. PubMed ID: 15751982 [TBL] [Abstract][Full Text] [Related]
9. Reexamination of the role of the leucine/isoleucine zipper residues of phospholamban in inhibition of the Ca2+ pump of cardiac sarcoplasmic reticulum. Cornea RL; Autry JM; Chen Z; Jones LR J Biol Chem; 2000 Dec; 275(52):41487-94. PubMed ID: 11016944 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation-dependent conformational switch in spin-labeled phospholamban bound to SERCA. Karim CB; Zhang Z; Howard EC; Torgersen KD; Thomas DD J Mol Biol; 2006 May; 358(4):1032-40. PubMed ID: 16574147 [TBL] [Abstract][Full Text] [Related]
11. A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Li M; Reddy LG; Bennett R; Silva ND; Jones LR; Thomas DD Biophys J; 1999 May; 76(5):2587-99. PubMed ID: 10233073 [TBL] [Abstract][Full Text] [Related]
13. Role of leucine 31 of phospholamban in structural and functional interactions with the Ca2+ pump of cardiac sarcoplasmic reticulum. Chen Z; Stokes DL; Jones LR J Biol Chem; 2005 Mar; 280(11):10530-9. PubMed ID: 15644311 [TBL] [Abstract][Full Text] [Related]
14. Close proximity between residue 30 of phospholamban and cysteine 318 of the cardiac Ca2+ pump revealed by intermolecular thiol cross-linking. Jones LR; Cornea RL; Chen Z J Biol Chem; 2002 Aug; 277(31):28319-29. PubMed ID: 12015326 [TBL] [Abstract][Full Text] [Related]
15. Phosphorylation-induced structural change in phospholamban and its mutants, detected by intrinsic fluorescence. Li M; Cornea RL; Autry JM; Jones LR; Thomas DD Biochemistry; 1998 May; 37(21):7869-77. PubMed ID: 9601048 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation of phospholamban by cAMP-dependent protein kinase enhances interactions between Ca-ATPase polypeptide chains in cardiac sarcoplasmic reticulum membranes. Negash S; Chen LT; Bigelow DJ; Squier TC Biochemistry; 1996 Sep; 35(35):11247-59. PubMed ID: 8784178 [TBL] [Abstract][Full Text] [Related]
17. Phospholamban remains associated with the Ca2+- and Mg2+-dependent ATPase following phosphorylation by cAMP-dependent protein kinase. Negash S; Yao Q; Sun H; Li J; Bigelow DJ; Squier TC Biochem J; 2000 Oct; 351(Pt 1):195-205. PubMed ID: 10998362 [TBL] [Abstract][Full Text] [Related]
18. Spatial and dynamic interactions between phospholamban and the canine cardiac Ca2+ pump revealed with use of heterobifunctional cross-linking agents. Chen Z; Stokes DL; Rice WJ; Jones LR J Biol Chem; 2003 Nov; 278(48):48348-56. PubMed ID: 12972413 [TBL] [Abstract][Full Text] [Related]
19. Protein-protein interactions in calcium transport regulation probed by saturation transfer electron paramagnetic resonance. James ZM; McCaffrey JE; Torgersen KD; Karim CB; Thomas DD Biophys J; 2012 Sep; 103(6):1370-8. PubMed ID: 22995510 [TBL] [Abstract][Full Text] [Related]
20. Toward a high-resolution structure of phospholamban: design of soluble transmembrane domain mutants. Frank S; Kammerer RA; Hellstern S; Pegoraro S; Stetefeld J; Lustig A; Moroder L; Engel J Biochemistry; 2000 Jun; 39(23):6825-31. PubMed ID: 10841762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]