These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 9724519)
21. Lipid-protein interactions with cardiac phospholamban studied by spin-label electron spin resonance. Arora A; Williamson IM; Lee AG; Marsh D Biochemistry; 2003 May; 42(17):5151-8. PubMed ID: 12718559 [TBL] [Abstract][Full Text] [Related]
22. Depolymerization of phospholamban in the presence of calcium pump: a fluorescence energy transfer study. Reddy LG; Jones LR; Thomas DD Biochemistry; 1999 Mar; 38(13):3954-62. PubMed ID: 10194307 [TBL] [Abstract][Full Text] [Related]
23. Phospholamban binds in a compact and ordered conformation to the Ca-ATPase. Li J; Xiong Y; Bigelow DJ; Squier TC Biochemistry; 2004 Jan; 43(2):455-63. PubMed ID: 14717600 [TBL] [Abstract][Full Text] [Related]
24. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis. Salleh HM; Patel MA; Woodard RW Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430 [TBL] [Abstract][Full Text] [Related]
25. Biochemical and biophysical comparison of native and chemically synthesized phospholamban and a monomeric phospholamban analog. Mayer EJ; McKenna E; Garsky VM; Burke CJ; Mach H; Middaugh CR; Sardana M; Smith JS; Johnson RG J Biol Chem; 1996 Jan; 271(3):1669-77. PubMed ID: 8576168 [TBL] [Abstract][Full Text] [Related]
26. A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure. Simmerman HK; Kobayashi YM; Autry JM; Jones LR J Biol Chem; 1996 Mar; 271(10):5941-6. PubMed ID: 8621468 [TBL] [Abstract][Full Text] [Related]
28. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102. Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118 [TBL] [Abstract][Full Text] [Related]
29. Cross-linking of C-terminal residues of phospholamban to the Ca2+ pump of cardiac sarcoplasmic reticulum to probe spatial and functional interactions within the transmembrane domain. Chen Z; Akin BL; Stokes DL; Jones LR J Biol Chem; 2006 May; 281(20):14163-72. PubMed ID: 16554295 [TBL] [Abstract][Full Text] [Related]
30. Essential role for Pro21 in phospholamban for optimal inhibition of the Ca-ATPase. Li J; Boschek CB; Xiong Y; Sacksteder CA; Squier TC; Bigelow DJ Biochemistry; 2005 Dec; 44(49):16181-91. PubMed ID: 16331978 [TBL] [Abstract][Full Text] [Related]
31. Conformational changes within the cytosolic portion of phospholamban upon release of Ca-ATPase inhibition. Li J; Bigelow DJ; Squier TC Biochemistry; 2004 Apr; 43(13):3870-9. PubMed ID: 15049694 [TBL] [Abstract][Full Text] [Related]
32. Phosphorylation by cAMP-dependent protein kinase modulates the structural coupling between the transmembrane and cytosolic domains of phospholamban. Li J; Bigelow DJ; Squier TC Biochemistry; 2003 Sep; 42(36):10674-82. PubMed ID: 12962492 [TBL] [Abstract][Full Text] [Related]
33. Effect of Phosphorylation on Interactions between Transmembrane Domains of SERCA and Phospholamban. Martin PD; James ZM; Thomas DD Biophys J; 2018 Jun; 114(11):2573-2583. PubMed ID: 29874608 [TBL] [Abstract][Full Text] [Related]
34. Structural and functional consequences of inactivation of human glutathione S-transferase P1-1 mediated by the catechol metabolite of equine estrogens, 4-hydroxyequilenin. Chang M; Shin YG; van Breemen RB; Blond SY; Bolton JL Biochemistry; 2001 Apr; 40(15):4811-20. PubMed ID: 11294649 [TBL] [Abstract][Full Text] [Related]
35. Calcium-sensitive regions of GCAP1 as observed by chemical modifications, fluorescence, and EPR spectroscopies. Sokal I; Li N; Klug CS; Filipek S; Hubbell WL; Baehr W; Palczewski K J Biol Chem; 2001 Nov; 276(46):43361-73. PubMed ID: 11524415 [TBL] [Abstract][Full Text] [Related]
36. Identification of pH-sensitive regions in the mouse prion by the cysteine-scanning spin-labeling ESR technique. Watanabe Y; Inanami O; Horiuchi M; Hiraoka W; Shimoyama Y; Inagaki F; Kuwabara M Biochem Biophys Res Commun; 2006 Nov; 350(3):549-56. PubMed ID: 17022940 [TBL] [Abstract][Full Text] [Related]
37. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles. McCaffrey JE; James ZM; Svensson B; Binder BP; Thomas DD J Magn Reson; 2016 Jan; 262():50-56. PubMed ID: 26720587 [TBL] [Abstract][Full Text] [Related]
38. Serine 16 phosphorylation induces an order-to-disorder transition in monomeric phospholamban. Metcalfe EE; Traaseth NJ; Veglia G Biochemistry; 2005 Mar; 44(11):4386-96. PubMed ID: 15766268 [TBL] [Abstract][Full Text] [Related]
39. The alpha-helical propensity of the cytoplasmic domain of phospholamban: a molecular dynamics simulation of the effect of phosphorylation and mutation. Paterlini MG; Thomas DD Biophys J; 2005 May; 88(5):3243-51. PubMed ID: 15764655 [TBL] [Abstract][Full Text] [Related]
40. Stabilization of barstar by chemical modification of the buried cysteines. Ramachandran S; Udgaonkar JB Biochemistry; 1996 Jul; 35(26):8776-85. PubMed ID: 8679642 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]