These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 9724529)
1. Differential roles for disulfide bonds in the structural integrity and biological activity of kappa-Bungarotoxin, a neuronal nicotinic acetylcholine receptor antagonist. Grant GA; Luetje CW; Summers R; Xu XL Biochemistry; 1998 Sep; 37(35):12166-71. PubMed ID: 9724529 [TBL] [Abstract][Full Text] [Related]
2. Critical interactions at the dimer interface of kappa-bungarotoxin, a neuronal nicotinic acetylcholine receptor antagonist. Grant GA; Al-Rabiee R; Xu XL; Zhang Y Biochemistry; 1997 Mar; 36(11):3353-8. PubMed ID: 9116014 [TBL] [Abstract][Full Text] [Related]
3. Computer modeling of binding of diverse weak toxins to nicotinic acetylcholine receptors. Mordvitsev DY; Polyak YL; Kuzmin DA; Levtsova OV; Tourleigh YV; Utkin YN; Shaitan KV; Tsetlin VI Comput Biol Chem; 2007 Apr; 31(2):72-81. PubMed ID: 17392029 [TBL] [Abstract][Full Text] [Related]
4. The functional role of positively charged amino acid side chains in alpha-bungarotoxin revealed by site-directed mutagenesis of a His-tagged recombinant alpha-bungarotoxin. Rosenthal JA; Levandoski MM; Chang B; Potts JF; Shi QL; Hawrot E Biochemistry; 1999 Jun; 38(24):7847-55. PubMed ID: 10387025 [TBL] [Abstract][Full Text] [Related]
5. Two novel alpha-neurotoxins isolated from the taipan snake, Oxyuranus scutellatus, exhibit reduced affinity for nicotinic acetylcholine receptors in brain and skeletal muscle. Zamudio F; Wolf KM; Martin BM; Possani LD; Chiappinelli VA Biochemistry; 1996 Jun; 35(24):7910-6. PubMed ID: 8672493 [TBL] [Abstract][Full Text] [Related]
6. α-Elapitoxin-Aa2a, a long-chain snake α-neurotoxin with potent actions on muscle (α1)(2)βγδ nicotinic receptors, lacks the classical high affinity for neuronal α7 nicotinic receptors. Blacklow B; Kornhauser R; Hains PG; Loiacono R; Escoubas P; Graudins A; Nicholson GM Biochem Pharmacol; 2011 Jan; 81(2):314-25. PubMed ID: 20950587 [TBL] [Abstract][Full Text] [Related]
7. Glycosylation within the cysteine loop and six residues near conserved Cys192/Cys193 are determinants of neuronal bungarotoxin sensitivity on the neuronal nicotinic receptor alpha3 subunit. Luetje CW; Maddox FN; Harvey SC Mol Pharmacol; 1998 Jun; 53(6):1112-9. PubMed ID: 9614216 [TBL] [Abstract][Full Text] [Related]
8. Determinants of potency on alpha-conotoxin MII, a peptide antagonist of neuronal nicotinic receptors. Everhart D; Cartier GE; Malhotra A; Gomes AV; McIntosh JM; Luetje CW Biochemistry; 2004 Mar; 43(10):2732-7. PubMed ID: 15005608 [TBL] [Abstract][Full Text] [Related]
9. Kappa 2-bungarotoxin and kappa 3-bungarotoxin: two new neuronal nicotinic receptor antagonists isolated from the venom of Bungarus multicinctus. Chiappinelli VA; Wolf KM; Grant GA; Chen SJ Brain Res; 1990 Feb; 509(2):237-48. PubMed ID: 2322821 [TBL] [Abstract][Full Text] [Related]
10. Consequence of the removal of evolutionary conserved disulfide bridges on the structure and function of charybdotoxin and evidence that particular cysteine spacings govern specific disulfide bond formation. Drakopoulou E; Vizzavona J; Neyton J; Aniort V; Bouet F; Virelizier H; Ménez A; Vita C Biochemistry; 1998 Feb; 37(5):1292-301. PubMed ID: 9477955 [TBL] [Abstract][Full Text] [Related]
11. Mutational analysis of roles for extracellular cysteine residues in the assembly and function of human alpha 7-nicotinic acetylcholine receptors. Dunckley T; Wu J; Zhao L; Lukas RJ Biochemistry; 2003 Feb; 42(4):870-6. PubMed ID: 12549904 [TBL] [Abstract][Full Text] [Related]
12. Probing the agonist domain of the nicotinic acetylcholine receptor by cysteine scanning mutagenesis reveals residues in proximity to the alpha-bungarotoxin binding site. Spura A; Russin TS; Freedman ND; Grant M; McLaughlin JT; Hawrot E Biochemistry; 1999 Apr; 38(16):4912-21. PubMed ID: 10213592 [TBL] [Abstract][Full Text] [Related]
13. Identification of residues that confer alpha-conotoxin-PnIA sensitivity on the alpha 3 subunit of neuronal nicotinic acetylcholine receptors. Everhart D; Reiller E; Mirzoian A; McIntosh JM; Malhotra A; Luetje CW J Pharmacol Exp Ther; 2003 Aug; 306(2):664-70. PubMed ID: 12734390 [TBL] [Abstract][Full Text] [Related]
14. cDNA sequence analysis of a novel neurotoxin homolog from Taiwan banded krait. Chang LS; Lin J Biochem Mol Biol Int; 1997 Oct; 43(2):347-54. PubMed ID: 9350342 [TBL] [Abstract][Full Text] [Related]
15. Bacterial expression, characterization, and disulfide bond determination of soluble human NTPDase6 (CD39L2) nucleotidase: implications for structure and function. Ivanenkov VV; Murphy-Piedmonte DM; Kirley TL Biochemistry; 2003 Oct; 42(40):11726-35. PubMed ID: 14529283 [TBL] [Abstract][Full Text] [Related]
16. Nonidentity of the alpha-neurotoxin binding sites on the nicotinic acetylcholine receptor revealed by modification in alpha-neurotoxin and receptor structures. Ackermann EJ; Taylor P Biochemistry; 1997 Oct; 36(42):12836-44. PubMed ID: 9335541 [TBL] [Abstract][Full Text] [Related]
17. kappa-Bungarotoxin: complete amino acid sequence of a neuronal nicotinic receptor probe. Grant GA; Chiappinelli VA Biochemistry; 1985 Mar; 24(6):1532-7. PubMed ID: 3986193 [TBL] [Abstract][Full Text] [Related]
18. Disulfide exchange folding of disulfide mutants of insulin-like growth factor I in vitro. Hober S; Uhlén M; Nilsson B Biochemistry; 1997 Apr; 36(15):4616-22. PubMed ID: 9109671 [TBL] [Abstract][Full Text] [Related]
19. Crystallization of kappa-bungarotoxin: preliminary X-ray data obtained from the venom-derived protein. Sachettini JC; Patel S; Scapin G; Fiordalisi JJ; Grant GA J Mol Biol; 1992 Jul; 226(2):559-62. PubMed ID: 1640467 [TBL] [Abstract][Full Text] [Related]
20. A model for short alpha-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: comparison with long-chain alpha-neurotoxins and alpha-conotoxins. Mordvintsev DY; Polyak YL; Levtsova OV; Tourleigh YV; Kasheverov IE; Shaitan KV; Utkin YN; Tsetlin VI Comput Biol Chem; 2005 Dec; 29(6):398-411. PubMed ID: 16290328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]