BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9725596)

  • 1. Predicting the radiation control probability of heterogeneous tumour ensembles: data analysis and parameter estimation using a closed-form expression.
    Fenwick JD
    Phys Med Biol; 1998 Aug; 43(8):2159-78. PubMed ID: 9725596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimum parameters in a model for tumour control probability, including interpatient heterogeneity: evaluation of the log-normal distribution.
    Keall PJ; Webb S
    Phys Med Biol; 2007 Jan; 52(1):291-302. PubMed ID: 17183142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of the relationship between radiosensitivity and volume effects in tumor control probability modeling.
    Buffa FM; Fenwick JD; Nahum AE
    Med Phys; 2000 Jun; 27(6):1258-65. PubMed ID: 10902554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fitting tumor control probability models to biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer: pitfalls in deducing radiobiologic parameters for tumors from clinical data.
    Levegrün S; Jackson A; Zelefsky MJ; Skwarchuk MW; Venkatraman ES; Schlegel W; Fuks Z; Leibel SA; Ling CC
    Int J Radiat Oncol Biol Phys; 2001 Nov; 51(4):1064-80. PubMed ID: 11704332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiobiological parameters in a tumour control probability model for prostate cancer LDR brachytherapy.
    Her EJ; Reynolds HM; Mears C; Williams S; Moorehouse C; Millar JL; Ebert MA; Haworth A
    Phys Med Biol; 2018 Jun; 63(13):135011. PubMed ID: 29799812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of tumour control probability for heterogeneous tumours in fractionated radiotherapy treatment protocols.
    Levin-Plotnik D; Hamilton RJ
    Phys Med Biol; 2004 Feb; 49(3):407-24. PubMed ID: 15012010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A TCP-NTCP estimation module using DVHs and known radiobiological models and parameter sets.
    Warkentin B; Stavrev P; Stavreva N; Field C; Fallone BG
    J Appl Clin Med Phys; 2004; 5(1):50-63. PubMed ID: 15753933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the effect of spread in radiosensitivity parameters and repopulation rate on the probability of tumour control.
    Stavreva N; Stavrev P; Balabanova A; Nahum A; Ruggieri R; Pressyanov D
    Phys Med; 2019 Jul; 63():79-86. PubMed ID: 31221413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The modelled benefits of individualizing radiotherapy patients' dose using cellular radiosensitivity assays with inherent variability.
    Mackay RI; Hendry JH
    Radiother Oncol; 1999 Jan; 50(1):67-75. PubMed ID: 10225559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A realistic closed-form radiobiological model of clinical tumor-control data incorporating intertumor heterogeneity.
    Roberts SA; Hendry JH
    Int J Radiat Oncol Biol Phys; 1998 Jun; 41(3):689-99. PubMed ID: 9635721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some characteristics of tumour control probability for heterogeneous tumours.
    Ebert MA; Hoban PW
    Phys Med Biol; 1996 Oct; 41(10):2125-33. PubMed ID: 8912385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On differences in radiosensitivity estimation: TCP experiments versus survival curves. A theoretical study.
    Stavrev P; Stavreva N; Ruggieri R; Nahum A
    Phys Med Biol; 2015 Aug; 60(15):N293-9. PubMed ID: 26215150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limitations of a TCP model incorporating population heterogeneity.
    Warkentin B; Stavrev P; Stavreva NA; Fallone BG
    Phys Med Biol; 2005 Aug; 50(15):3571-88. PubMed ID: 16030383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological optimization of heterogeneous dose distributions in systemic radiotherapy.
    Strigari L; D'Andrea M; Maini CL; Sciuto R; Benassi M
    Med Phys; 2006 Jun; 33(6):1857-66. PubMed ID: 16872093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of delays in radiotherapy treatment on tumour control.
    Wyatt RM; Beddoe AH; Dale RG
    Phys Med Biol; 2003 Jan; 48(2):139-55. PubMed ID: 12587901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental form of a population TCP model in the limit of large heterogeneity.
    Carlone MC; Warkentin B; Stavrev P; Fallone BG
    Med Phys; 2006 Jun; 33(6):1634-42. PubMed ID: 16872071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of adaptive radiotherapy of bladder cancer by image-based tumour control probability modelling.
    Wright P; Muren LP; Høyer M; Malinen E
    Acta Oncol; 2010 Oct; 49(7):1045-51. PubMed ID: 20831494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling I-125 permanent implant prostate brachytherapy Monte Carlo dose calculations with radiobiological models.
    Miksys N; Haidari M; Vigneault E; Martin AG; Beaulieu L; Thomson RM
    Med Phys; 2017 Aug; 44(8):4329-4340. PubMed ID: 28455849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies.
    van Leeuwen CM; Oei AL; Crezee J; Bel A; Franken NAP; Stalpers LJA; Kok HP
    Radiat Oncol; 2018 May; 13(1):96. PubMed ID: 29769103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of inhomogeneous radiosensitivity distributions and intrafractional organ movement on the tumour control probability of focused IMRT in prostate cancer.
    Thomann B; Sachpazidis I; Koubar K; Zamboglou C; Mavroidis P; Wiehle R; Grosu AL; Baltas D
    Radiother Oncol; 2018 Apr; 127(1):62-67. PubMed ID: 29548559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.