BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9725621)

  • 1. Estimates of relative binding free energies for HIV protease inhibitors using different levels of approximations.
    Lee CY; Yang PK; Tzou WS; Hwang MJ
    Protein Eng; 1998 Jun; 11(6):429-37. PubMed ID: 9725621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy perturbation studies on binding of A-74704 and its diester analog to HIV-1 protease.
    Rao BG; Murcko MA
    Protein Eng; 1996 Sep; 9(9):767-71. PubMed ID: 8888142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based thermodynamic analysis of HIV-1 protease inhibitors.
    Bardi JS; Luque I; Freire E
    Biochemistry; 1997 Jun; 36(22):6588-96. PubMed ID: 9184138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of binding free energies for HIV proteinase inhibitors by molecular dynamics simulations.
    Hansson T; Aqvist J
    Protein Eng; 1995 Nov; 8(11):1137-44. PubMed ID: 8819979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics of HIV-1 protease in complex with a difluoroketone-containing inhibitor: implications for the catalytic mechanism.
    Silva AM; Cachau RE; Baldwin ET; Gulnik S; Sham HL; Erickson JW
    Adv Exp Med Biol; 1995; 362():451-4. PubMed ID: 8540356
    [No Abstract]   [Full Text] [Related]  

  • 6. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
    Verkhivker GM
    Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A preference-based free-energy parameterization of enzyme-inhibitor binding. Applications to HIV-1-protease inhibitor design.
    Wallqvist A; Jernigan RL; Covell DG
    Protein Sci; 1995 Sep; 4(9):1881-903. PubMed ID: 8528086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free energy component analysis for drug design: a case study of HIV-1 protease-inhibitor binding.
    Kalra P; Reddy TV; Jayaram B
    J Med Chem; 2001 Dec; 44(25):4325-38. PubMed ID: 11728180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting relative binding affinities of non-peptide HIV protease inhibitors with free energy perturbation calculations.
    McCarrick MA; Kollman PA
    J Comput Aided Mol Des; 1999 Mar; 13(2):109-21. PubMed ID: 10091118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative binding free energies of peptide inhibitors of HIV-1 protease: the influence of the active site protonation state.
    Chen X; Tropsha A
    J Med Chem; 1995 Jan; 38(1):42-8. PubMed ID: 7837238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An approach to rapid estimation of relative binding affinities of enzyme inhibitors: application to peptidomimetic inhibitors of the human immunodeficiency virus type 1 protease.
    Viswanadhan VN; Reddy MR; Wlodawer A; Varney MD; Weinstein JN
    J Med Chem; 1996 Feb; 39(3):705-12. PubMed ID: 8576913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy calculations and analysis of HIV-1 protease-inhibitor crystal structures.
    Gustchina A; Sansom C; Prevost M; Richelle J; Wodak SY; Wlodawer A; Weber IT
    Protein Eng; 1994 Mar; 7(3):309-17. PubMed ID: 8177879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of human immunodeficiency virus-1 protease by a C2-symmetric phosphinate. Synthesis and crystallographic analysis.
    Abdel-Meguid SS; Zhao B; Murthy KH; Winborne E; Choi JK; DesJarlais RL; Minnich MD; Culp JS; Debouck C; Tomaszek TA
    Biochemistry; 1993 Aug; 32(31):7972-80. PubMed ID: 8347601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
    Wittayanarakul K; Hannongbua S; Feig M
    J Comput Chem; 2008 Apr; 29(5):673-85. PubMed ID: 17849388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition and catalytic mechanism of HIV-1 aspartic protease.
    Silva AM; Cachau RE; Sham HL; Erickson JW
    J Mol Biol; 1996 Jan; 255(2):321-46. PubMed ID: 8551523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent accessibility as a predictive tool for the free energy of inhibitor binding to the HIV-1 protease.
    Nauchitel V; Villaverde MC; Sussman F
    Protein Sci; 1995 Jul; 4(7):1356-64. PubMed ID: 7670378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide mimetics as enzyme inhibitors: use of free energy perturbation calculations to evaluate isosteric replacement for amide bonds in a potent HIV protease inhibitor.
    Cieplak P; Kollman PA
    J Comput Aided Mol Des; 1993 Jun; 7(3):291-304. PubMed ID: 8377026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of physical organic properties on hydrophobic fields.
    Abraham DJ; Kellogg GE
    J Comput Aided Mol Des; 1994 Feb; 8(1):41-9. PubMed ID: 8035211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of HIV-1 protease inhibitor resistance by phosphonate-mediated solvent anchoring.
    Cihlar T; He GX; Liu X; Chen JM; Hatada M; Swaminathan S; McDermott MJ; Yang ZY; Mulato AS; Chen X; Leavitt SA; Stray KM; Lee WA
    J Mol Biol; 2006 Oct; 363(3):635-47. PubMed ID: 16979654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.