These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9725621)

  • 21. Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases.
    Sadiq SK; Wright D; Watson SJ; Zasada SJ; Stoica I; Coveney PV
    J Chem Inf Model; 2008 Sep; 48(9):1909-19. PubMed ID: 18710212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relative differences in the binding free energies of human immunodeficiency virus 1 protease inhibitors: a thermodynamic cycle-perturbation approach.
    Reddy MR; Viswanadhan VN; Weinstein JN
    Proc Natl Acad Sci U S A; 1991 Nov; 88(22):10287-91. PubMed ID: 1946447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular mechanics analysis of inhibitor binding to HIV-1 protease.
    Sansom CE; Wu J; Weber IT
    Protein Eng; 1992 Oct; 5(7):659-67. PubMed ID: 1480620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.
    Chetty S; Bhakat S; Martin AJ; Soliman ME
    J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the molecular dynamics and calculated binding free energies for nine FDA-approved HIV-1 PR drugs against subtype B and C-SA HIV PR.
    Ahmed SM; Kruger HG; Govender T; Maguire GE; Sayed Y; Ibrahim MA; Naicker P; Soliman ME
    Chem Biol Drug Des; 2013 Feb; 81(2):208-18. PubMed ID: 23017010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational studies on HIV-1 protease inhibitors: influence of calculated inhibitor-enzyme binding affinities on the statistical quality of 3D-QSAR CoMFA models.
    Jayatilleke PR; Nair AC; Zauhar R; Welsh WJ
    J Med Chem; 2000 Nov; 43(23):4446-51. PubMed ID: 11087569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the flap dynamics of the South African HIV subtype C protease in presence of FDA-approved inhibitors: MD study.
    Maphumulo SI; Halder AK; Govender T; Maseko S; Maguire GEM; Honarparvar B; Kruger HG
    Chem Biol Drug Des; 2018 Nov; 92(5):1899-1913. PubMed ID: 30003668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. QXP: powerful, rapid computer algorithms for structure-based drug design.
    McMartin C; Bohacek RS
    J Comput Aided Mol Des; 1997 Jul; 11(4):333-44. PubMed ID: 9334900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate prediction of relative binding affinities of a series of HIV-1 protease inhibitors using semi-empirical quantum mechanical charge.
    Peng C; Wang J; Xu Z; Cai T; Zhu W
    J Comput Chem; 2020 Jul; 41(19):1773-1780. PubMed ID: 32352193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative binding energy analysis of HIV-1 protease inhibitors: incorporation of solvent effects and validation as a powerful tool in receptor-based drug design.
    Pérez C; Pastor M; Ortiz AR; Gago F
    J Med Chem; 1998 Mar; 41(6):836-52. PubMed ID: 9526559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calculation of relative differences in the binding free energies of HIV1 protease inhibitors: a thermodynamic cycle perturbation approach.
    Reddy MR; Varney MD; Kalish V; Viswanadhan VN; Appelt K
    J Med Chem; 1994 Apr; 37(8):1145-52. PubMed ID: 8164256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach.
    Jenwitheesuk E; Samudrala R
    Antivir Ther; 2005; 10(1):157-66. PubMed ID: 15751773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of polarization on HIV-1protease and fluoro-substituted inhibitors binding energies by large scale molecular dynamics simulations.
    Duan LL; Zhu T; Li YC; Zhang QG; Zhang JZ
    Sci Rep; 2017 Feb; 7():42223. PubMed ID: 28155907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations.
    Lepsík M; Kríz Z; Havlas Z
    Proteins; 2004 Nov; 57(2):279-93. PubMed ID: 15340915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A molecular field-based similarity approach to pharmacophoric pattern recognition.
    Mestres J; Rohrer DC; Maggiora GM
    J Mol Graph Model; 1997 Apr; 15(2):114-21, 103-6. PubMed ID: 9385558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. X-ray crystallographic studies of a series of penicillin-derived asymmetric inhibitors of HIV-1 protease.
    Jhoti H; Singh OM; Weir MP; Cooke R; Murray-Rust P; Wonacott A
    Biochemistry; 1994 Jul; 33(28):8417-27. PubMed ID: 8031777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibitor docking screened by the modified SAFE_p scoring function: application to cyclic urea HIV-1 PR inhibitors.
    Vilar S; Villaverde MC; Sussman F
    J Comput Chem; 2007 Oct; 28(13):2216-25. PubMed ID: 17450567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes.
    Lu Y; Yang CY; Wang S
    J Am Chem Soc; 2006 Sep; 128(36):11830-9. PubMed ID: 16953623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work.
    Ngo ST; Hung HM; Nguyen MT
    J Comput Chem; 2016 Dec; 37(31):2734-2742. PubMed ID: 27709639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the relative binding free energies of peptide inhibitors to the HIV-1 protease.
    Ferguson DM; Radmer RJ; Kollman PA
    J Med Chem; 1991 Aug; 34(8):2654-9. PubMed ID: 1652028
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.