BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9725699)

  • 1. Absence of plasticity of the frequency map in dorsal cochlear nucleus of adult cats after unilateral partial cochlear lesions.
    Rajan R; Irvine DR
    J Comp Neurol; 1998 Sep; 399(1):35-46. PubMed ID: 9725699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex.
    Rajan R; Irvine DR; Wise LZ; Heil P
    J Comp Neurol; 1993 Dec; 338(1):17-49. PubMed ID: 8300898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness.
    Robertson D; Irvine DR
    J Comp Neurol; 1989 Apr; 282(3):456-71. PubMed ID: 2715393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions.
    Kamke MR; Brown M; Irvine DR
    J Comp Neurol; 2003 May; 459(4):355-67. PubMed ID: 12687704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Severe and extensive neonatal hearing loss in cats results in auditory cortex plasticity that differentiates into two regions.
    Rajan R; Irvine DR
    Eur J Neurosci; 2010 Jun; 31(11):1999-2013. PubMed ID: 20497473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of restricted cochlear lesions in adult cats on the frequency organization of the inferior colliculus.
    Irvine DR; Rajan R; Smith S
    J Comp Neurol; 2003 Dec; 467(3):354-74. PubMed ID: 14608599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity.
    Rajan R
    Nat Neurosci; 1998 Jun; 1(2):138-43. PubMed ID: 10195129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basal forebrain cholinergic input is not essential for lesion-induced plasticity in mature auditory cortex.
    Kamke MR; Brown M; Irvine DR
    Neuron; 2005 Nov; 48(4):675-86. PubMed ID: 16301182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contralateral inhibitory and excitatory frequency response maps in the mammalian cochlear nucleus.
    Ingham NJ; Bleeck S; Winter IM
    Eur J Neurosci; 2006 Nov; 24(9):2515-29. PubMed ID: 17100840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Rapid functional plasticity of the neurons in the inferior colliculus and dorsal cochlear nucleus after brief exposure to intense pure tone].
    Wang J; Ding D
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1997 Aug; 32(4):218-21. PubMed ID: 10743169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticofugal modulation of the midbrain frequency map in the bat auditory system.
    Yan W; Suga N
    Nat Neurosci; 1998 May; 1(1):54-8. PubMed ID: 10195109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type.
    Schaette R; Kempter R
    Hear Res; 2008 Jun; 240(1-2):57-72. PubMed ID: 18396381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the tonotopic map of the dorsal cochlear nucleus in hamsters with hair cell loss and radial nerve bundle degeneration.
    Meleca RJ; Kaltenbach JA; Falzarano PR
    Brain Res; 1997 Mar; 750(1-2):201-13. PubMed ID: 9098546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of cochlear pathology with auditory brainstem and cortical responses in cats with high frequency hearing loss.
    Mount RJ; Harrison RV; Stanton SG; Nagasawa A
    Scanning Microsc; 1991 Dec; 5(4):1105-12; discussion 1112-3. PubMed ID: 1822032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastic changes in glycine and GABA release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation.
    Suneja SK; Potashner SJ; Benson CG
    Exp Neurol; 1998 Jun; 151(2):273-88. PubMed ID: 9628763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-plastic reorganization of frequency coding in the inferior colliculus of the rat following noise-induced hearing loss.
    Izquierdo MA; Gutiérrez-Conde PM; Merchán MA; Malmierca MS
    Neuroscience; 2008 Jun; 154(1):355-69. PubMed ID: 18384972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem.
    Michler SA; Illing RB
    J Comp Neurol; 2002 Sep; 451(3):250-66. PubMed ID: 12210137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronally modulated transcription of a glycine transporter in rat dorsal cochlear nucleus and nucleus of the medial trapezoid body.
    Barmack NH; Guo H; Kim HJ; Qian H; Qian Z
    J Comp Neurol; 1999 Dec; 415(2):175-88. PubMed ID: 10545158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The projections of intracellularly labeled auditory nerve fibers to the dorsal cochlear nucleus of cats.
    Ryugo DK; May SK
    J Comp Neurol; 1993 Mar; 329(1):20-35. PubMed ID: 8454724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of hyperactivity in the hamster dorsal cochlear nucleus following intense sound exposure.
    Zhang JS; Kaltenbach JA; Godfrey DA; Wang J
    J Neurosci Res; 2006 Sep; 84(4):819-31. PubMed ID: 16862546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.