BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9725997)

  • 1. Studies on the genotoxicity of the mammalian lignans enterolactone and enterodiol and their metabolic precursors at various endpoints in vitro.
    Kulling SE; Jacobs E; Pfeiffer E; Metzler M
    Mutat Res; 1998 Aug; 416(1-2):115-24. PubMed ID: 9725997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian phytoestrogens: enterodiol and enterolactone.
    Wang LQ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2002 Sep; 777(1-2):289-309. PubMed ID: 12270221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone.
    Wang LQ; Meselhy MR; Li Y; Qin GW; Hattori M
    Chem Pharm Bull (Tokyo); 2000 Nov; 48(11):1606-10. PubMed ID: 11086885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human intestinal bacterium, strain END-2 is responsible for demethylation as well as lactonization during plant lignan metabolism.
    Jin JS; Hattori M
    Biol Pharm Bull; 2010; 33(8):1443-7. PubMed ID: 20686246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further studies on a human intestinal bacterium Ruminococcus sp. END-1 for transformation of plant lignans to mammalian lignans.
    Jin JS; Hattori M
    J Agric Food Chem; 2009 Aug; 57(16):7537-42. PubMed ID: 19630415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and metabolism of lignans by the human faecal flora.
    Borriello SP; Setchell KD; Axelson M; Lawson AM
    J Appl Bacteriol; 1985 Jan; 58(1):37-43. PubMed ID: 2984153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria.
    Jin JS; Zhao YF; Nakamura N; Akao T; Kakiuchi N; Min BS; Hattori M
    Biol Pharm Bull; 2007 Nov; 30(11):2113-9. PubMed ID: 17978485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative metabolites and genotoxic potential of mammalian and plant lignans in vitro.
    Niemeyer HB; Metzler M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2002 Sep; 777(1-2):321-7. PubMed ID: 12270223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol.
    Heinonen S; Nurmi T; Liukkonen K; Poutanen K; Wähälä K; Deyama T; Nishibe S; Adlercreutz H
    J Agric Food Chem; 2001 Jul; 49(7):3178-86. PubMed ID: 11453749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of dietary lignans in the reduction of breast cancer risk.
    Saarinen NM; Wärri A; Airio M; Smeds A; Mäkelä S
    Mol Nutr Food Res; 2007 Jul; 51(7):857-66. PubMed ID: 17576639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel metabolites of the mammalian lignans enterolactone and enterodiol in human urine.
    Jacobs E; Kulling SE; Metzler M
    J Steroid Biochem Mol Biol; 1999 Mar; 68(5-6):211-8. PubMed ID: 10416836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective oxidation of enterodiol to enterolactone by human intestinal bacteria.
    Jin JS; Kakiuchi N; Hattori M
    Biol Pharm Bull; 2007 Nov; 30(11):2204-6. PubMed ID: 17978502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake and metabolism of enterolactone and enterodiol by human colon epithelial cells.
    Jansen GH; Arts IC; Nielen MW; Müller M; Hollman PC; Keijer J
    Arch Biochem Biophys; 2005 Mar; 435(1):74-82. PubMed ID: 15680909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells.
    During A; Debouche C; Raas T; Larondelle Y
    J Nutr; 2012 Oct; 142(10):1798-805. PubMed ID: 22955517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aneuploidogenic and clastogenic potential of the mycotoxins citrinin and patulin.
    Pfeiffer E; Gross K; Metzler M
    Carcinogenesis; 1998 Jul; 19(7):1313-8. PubMed ID: 9683194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of metabolites of the lignans enterolactone and enterodiol on osteoblastic differentiation of MG-63 cells.
    Feng J; Shi Z; Ye Z
    Biol Pharm Bull; 2008 Jun; 31(6):1067-70. PubMed ID: 18520031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative metabolites of the mammalian lignans enterodiol and enterolactone in rat bile and urine.
    Niemeyer HB; Honig D; Lange-Böhmer A; Jacobs E; Kulling SE; Metzler M
    J Agric Food Chem; 2000 Jul; 48(7):2910-9. PubMed ID: 10898644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitability of a batch in vitro fermentation model using human faecal microbiota for prediction of conversion of flaxseed lignans to enterolactone with reference to an in vivo rat model.
    Aura AM; Oikarinen S; Mutanen M; Heinonen SM; Adlercreutz HC; Virtanen H; Poutanen KS
    Eur J Nutr; 2006 Feb; 45(1):45-51. PubMed ID: 15864408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiproliferative activity of lignans against the breast carcinoma cell lines MCF 7 and BT 20.
    Abarzua S; Serikawa T; Szewczyk M; Richter DU; Piechulla B; Briese V
    Arch Gynecol Obstet; 2012 Apr; 285(4):1145-51. PubMed ID: 22037685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The plant lignans matairesinol and secoisolariciresinol administered to Min mice do not protect against intestinal tumor formation.
    Pajari AM; Smeds AI; Oikarinen SI; Eklund PC; Sjöholm RE; Mutanen M
    Cancer Lett; 2006 Feb; 233(2):309-14. PubMed ID: 16000235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.