These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9725997)

  • 1. Studies on the genotoxicity of the mammalian lignans enterolactone and enterodiol and their metabolic precursors at various endpoints in vitro.
    Kulling SE; Jacobs E; Pfeiffer E; Metzler M
    Mutat Res; 1998 Aug; 416(1-2):115-24. PubMed ID: 9725997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian phytoestrogens: enterodiol and enterolactone.
    Wang LQ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2002 Sep; 777(1-2):289-309. PubMed ID: 12270221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone.
    Wang LQ; Meselhy MR; Li Y; Qin GW; Hattori M
    Chem Pharm Bull (Tokyo); 2000 Nov; 48(11):1606-10. PubMed ID: 11086885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human intestinal bacterium, strain END-2 is responsible for demethylation as well as lactonization during plant lignan metabolism.
    Jin JS; Hattori M
    Biol Pharm Bull; 2010; 33(8):1443-7. PubMed ID: 20686246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further studies on a human intestinal bacterium Ruminococcus sp. END-1 for transformation of plant lignans to mammalian lignans.
    Jin JS; Hattori M
    J Agric Food Chem; 2009 Aug; 57(16):7537-42. PubMed ID: 19630415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and metabolism of lignans by the human faecal flora.
    Borriello SP; Setchell KD; Axelson M; Lawson AM
    J Appl Bacteriol; 1985 Jan; 58(1):37-43. PubMed ID: 2984153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria.
    Jin JS; Zhao YF; Nakamura N; Akao T; Kakiuchi N; Min BS; Hattori M
    Biol Pharm Bull; 2007 Nov; 30(11):2113-9. PubMed ID: 17978485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative metabolites and genotoxic potential of mammalian and plant lignans in vitro.
    Niemeyer HB; Metzler M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2002 Sep; 777(1-2):321-7. PubMed ID: 12270223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol.
    Heinonen S; Nurmi T; Liukkonen K; Poutanen K; Wähälä K; Deyama T; Nishibe S; Adlercreutz H
    J Agric Food Chem; 2001 Jul; 49(7):3178-86. PubMed ID: 11453749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of dietary lignans in the reduction of breast cancer risk.
    Saarinen NM; Wärri A; Airio M; Smeds A; Mäkelä S
    Mol Nutr Food Res; 2007 Jul; 51(7):857-66. PubMed ID: 17576639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel metabolites of the mammalian lignans enterolactone and enterodiol in human urine.
    Jacobs E; Kulling SE; Metzler M
    J Steroid Biochem Mol Biol; 1999 Mar; 68(5-6):211-8. PubMed ID: 10416836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective oxidation of enterodiol to enterolactone by human intestinal bacteria.
    Jin JS; Kakiuchi N; Hattori M
    Biol Pharm Bull; 2007 Nov; 30(11):2204-6. PubMed ID: 17978502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake and metabolism of enterolactone and enterodiol by human colon epithelial cells.
    Jansen GH; Arts IC; Nielen MW; Müller M; Hollman PC; Keijer J
    Arch Biochem Biophys; 2005 Mar; 435(1):74-82. PubMed ID: 15680909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells.
    During A; Debouche C; Raas T; Larondelle Y
    J Nutr; 2012 Oct; 142(10):1798-805. PubMed ID: 22955517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aneuploidogenic and clastogenic potential of the mycotoxins citrinin and patulin.
    Pfeiffer E; Gross K; Metzler M
    Carcinogenesis; 1998 Jul; 19(7):1313-8. PubMed ID: 9683194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of metabolites of the lignans enterolactone and enterodiol on osteoblastic differentiation of MG-63 cells.
    Feng J; Shi Z; Ye Z
    Biol Pharm Bull; 2008 Jun; 31(6):1067-70. PubMed ID: 18520031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative metabolites of the mammalian lignans enterodiol and enterolactone in rat bile and urine.
    Niemeyer HB; Honig D; Lange-Böhmer A; Jacobs E; Kulling SE; Metzler M
    J Agric Food Chem; 2000 Jul; 48(7):2910-9. PubMed ID: 10898644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitability of a batch in vitro fermentation model using human faecal microbiota for prediction of conversion of flaxseed lignans to enterolactone with reference to an in vivo rat model.
    Aura AM; Oikarinen S; Mutanen M; Heinonen SM; Adlercreutz HC; Virtanen H; Poutanen KS
    Eur J Nutr; 2006 Feb; 45(1):45-51. PubMed ID: 15864408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiproliferative activity of lignans against the breast carcinoma cell lines MCF 7 and BT 20.
    Abarzua S; Serikawa T; Szewczyk M; Richter DU; Piechulla B; Briese V
    Arch Gynecol Obstet; 2012 Apr; 285(4):1145-51. PubMed ID: 22037685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The plant lignans matairesinol and secoisolariciresinol administered to Min mice do not protect against intestinal tumor formation.
    Pajari AM; Smeds AI; Oikarinen SI; Eklund PC; Sjöholm RE; Mutanen M
    Cancer Lett; 2006 Feb; 233(2):309-14. PubMed ID: 16000235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.