These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9726279)

  • 21. Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors.
    García J; Tanabe T; Beam KG
    J Gen Physiol; 1994 Jan; 103(1):125-47. PubMed ID: 8169595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low serum promotes maturation of excitation-contraction coupling in myotubes.
    Suda N; Dirksen RT; Gonzalez A; Beam KG
    Pflugers Arch; 2000 Mar; 439(5):555-8. PubMed ID: 10764214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory effects of cocaine on Ca2+ transients and contraction in single cardiomyocytes.
    Renard DC; Delaville FJ; Thomas AP
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H555-67. PubMed ID: 8141357
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells.
    López-López JR; Shacklock PS; Balke CW; Wier WG
    Science; 1995 May; 268(5213):1042-5. PubMed ID: 7754383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Truncation of the carboxyl terminus of the dihydropyridine receptor beta1a subunit promotes Ca2+ dependent excitation-contraction coupling in skeletal myotubes.
    Sheridan DC; Cheng W; Ahern CA; Mortenson L; Alsammarae D; Vallejo P; Coronado R
    Biophys J; 2003 Jan; 84(1):220-37. PubMed ID: 12524277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of membrane potential and myoplasmic [Ca2+] in developing rat myotubes at rest and in response to stimulation.
    Bakker AJ; Head SI; Stephenson DG
    Cell Calcium; 1996 May; 19(5):409-18. PubMed ID: 8793181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Voltage dependence of intracellular [Ca2+]i transients in guinea pig ventricular myocytes.
    Barcenas-Ruiz L; Wier WG
    Circ Res; 1987 Jul; 61(1):148-54. PubMed ID: 2440616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of reducing agents and oxidants on excitation-contraction coupling in skeletal muscle fibres of rat and toad.
    Posterino GS; Lamb GD
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):809-25. PubMed ID: 8930846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ethanol decreases basal cytosolic-free calcium concentration in cultured skeletal muscle cells.
    Cofán M; Fernandez-Solà J; Nicolás JM; Poch E; Urbano-Márquez A
    Alcohol Alcohol; 1995 Sep; 30(5):617-21. PubMed ID: 8554644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myotonic dystrophy protein kinase is involved in the modulation of the Ca2+ homeostasis in skeletal muscle cells.
    Benders AA; Groenen PJ; Oerlemans FT; Veerkamp JH; Wieringa B
    J Clin Invest; 1997 Sep; 100(6):1440-7. PubMed ID: 9294109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimate of net calcium fluxes and sarcoplasmic reticulum calcium content during systole in rat ventricular myocytes.
    Negretti N; Varro A; Eisner DA
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):581-91. PubMed ID: 7473221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells.
    Beuckelmann DJ; Wier WG
    J Physiol; 1988 Nov; 405():233-55. PubMed ID: 2475607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of myoplasmic pH on excitation-contraction coupling in skeletal muscle fibres of the toad.
    Lamb GD; Recupero E; Stephenson DG
    J Physiol; 1992 Mar; 448():211-24. PubMed ID: 1317442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Store operated Ca2+ influx by selective depletion of ryanodine sensitive Ca2+ pools in primary human skeletal muscle cells.
    Weigl L; Zidar A; Gscheidlinger R; Karel A; Hohenegger M
    Naunyn Schmiedebergs Arch Pharmacol; 2003 Apr; 367(4):353-63. PubMed ID: 12690427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of Ca2+ entry into rat lactotrophs by thyrotrophin-releasing hormone.
    Carew MA; Mason WT
    J Physiol; 1995 Jul; 486 ( Pt 2)(Pt 2):349-60. PubMed ID: 7473202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fura-2 imaging of spontaneous and electrically induced oscillations of intracellular free Ca2+ in rat myotubes.
    Grouselle M; Koenig J; Lascombe ML; Chapron J; Méléard P; Georgescauld D
    Pflugers Arch; 1991 Mar; 418(1-2):40-50. PubMed ID: 2041724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium-induced calcium release in crayfish skeletal muscle.
    Györke S; Palade P
    J Physiol; 1992 Nov; 457():195-210. PubMed ID: 1338456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcium channel subtypes responsible for voltage-gated intracellular calcium elevations in embryonic rat motoneurons.
    Scamps F; Valentin S; Dayanithi G; Valmier J
    Neuroscience; 1998 Dec; 87(3):719-30. PubMed ID: 9758236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Excitation-contraction coupling of cultured human skeletal muscle cells and the relation between basal cytosolic Ca2+ and excitability.
    Benders AA; Oosterhof A; Wevers RA; Veerkamp JH
    Cell Calcium; 1997 Jan; 21(1):81-91. PubMed ID: 9056080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of Ca2+ release by caffeine and voltage in frog skeletal muscle.
    Shirokova N; Ríos E
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):317-39. PubMed ID: 8782099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.