These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 9726893)
1. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis. Le Van TD; Robinson JA; Ralph J; Greening RC; Smolenski WJ; Leedle JA; Schaefer DM Appl Environ Microbiol; 1998 Sep; 64(9):3429-36. PubMed ID: 9726893 [TBL] [Abstract][Full Text] [Related]
2. Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis. Nollet L; Demeyer D; Verstraete W Appl Environ Microbiol; 1997 Jan; 63(1):194-200. PubMed ID: 8979351 [TBL] [Abstract][Full Text] [Related]
3. In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Chaucheyras F; Fonty G; Bertin G; Gouet P Appl Environ Microbiol; 1995 Sep; 61(9):3466-7. PubMed ID: 7574654 [TBL] [Abstract][Full Text] [Related]
4. Competition between reductive acetogenesis and methanogenesis in the pig large-intestinal flora. De Graeve KG; Grivet JP; Durand M; Beaumatin P; Cordelet C; Hannequart G; Demeyer D J Appl Bacteriol; 1994 Jan; 76(1):55-61. PubMed ID: 8144406 [TBL] [Abstract][Full Text] [Related]
5. Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Fonty G; Joblin K; Chavarot M; Roux R; Naylor G; Michallon F Appl Environ Microbiol; 2007 Oct; 73(20):6391-403. PubMed ID: 17675444 [TBL] [Abstract][Full Text] [Related]
6. Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Greening RC; Leedle JA Arch Microbiol; 1989; 151(5):399-406. PubMed ID: 2500921 [TBL] [Abstract][Full Text] [Related]
7. Attempts to induce reductive acetogenesis into a sheep rumen. Immig I; Demeyer D; Fiedler D; Van Nevel C; Mbanzamihigo L Arch Tierernahr; 1996; 49(4):363-70. PubMed ID: 8988318 [TBL] [Abstract][Full Text] [Related]
8. The effects of co-cultivation with the acetogen Acetitomaculum ruminis on the fermentative metabolism of the rumen fungi Neocallimastix patriciarum and Neocallimastix sp. strain L2. Rees EM; Lloyd D; Williams AG FEMS Microbiol Lett; 1995 Nov; 133(1-2):175-80. PubMed ID: 8566705 [TBL] [Abstract][Full Text] [Related]
9. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage. Min BR; Pinchak WE; Anderson RC; Hume ME J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591 [TBL] [Abstract][Full Text] [Related]
10. Diverse hydrogen production and consumption pathways influence methane production in ruminants. Greening C; Geier R; Wang C; Woods LC; Morales SE; McDonald MJ; Rushton-Green R; Morgan XC; Koike S; Leahy SC; Kelly WJ; Cann I; Attwood GT; Cook GM; Mackie RI ISME J; 2019 Oct; 13(10):2617-2632. PubMed ID: 31243332 [TBL] [Abstract][Full Text] [Related]
11. Effects of monensin, pyromellitic diimide and 2-bromoethanesulfonic acid on rumen fermentation in vitro. Martin SA; Macy JM J Anim Sci; 1985 Feb; 60(2):544-50. PubMed ID: 2985530 [TBL] [Abstract][Full Text] [Related]
12. Competition Between Chemolithotrophic Acetogenesis and Hydrogenotrophic Methanogenesis for Exogenous H Fu B; Jin X; Conrad R; Liu H; Liu H Front Microbiol; 2019; 10():2418. PubMed ID: 31749772 [TBL] [Abstract][Full Text] [Related]
13. Attempted induction of reductive acetogenesis into the rumen fermentation in vitro. Demeyer DI; Fiedler D; De Graeve KG Reprod Nutr Dev; 1996; 36(3):233-40. PubMed ID: 8766728 [TBL] [Abstract][Full Text] [Related]
14. Limits to Dihydrogen Incorporation into Electron Sinks Alternative to Methanogenesis in Ruminal Fermentation. Ungerfeld EM Front Microbiol; 2015; 6():1272. PubMed ID: 26635743 [TBL] [Abstract][Full Text] [Related]
15. Postprandial changes in methanogenic and acidogenic bacteria in the rumens of steers fed high- or low-forage diets once daily. Leedle JA; Greening RC Appl Environ Microbiol; 1988 Feb; 54(2):502-6. PubMed ID: 3355135 [TBL] [Abstract][Full Text] [Related]
16. Sugar phosphorylation activity in ruminal acetogens. Jiang W; Pinder RS; Patterson JA; Ricke SC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):843-6. PubMed ID: 22423990 [TBL] [Abstract][Full Text] [Related]
17. Distinct microbial hydrogen and reductant disposal pathways explain interbreed variations in ruminant methane yield. Li Q; Ma Z; Huo J; Zhang X; Wang R; Zhang S; Jiao J; Dong X; Janssen PH; Ungerfeld EM; Greening C; Tan Z; Wang M ISME J; 2024 Jan; 18(1):. PubMed ID: 38365243 [TBL] [Abstract][Full Text] [Related]
18. Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities. Lettat A; Hassanat F; Benchaar C J Dairy Sci; 2013 Aug; 96(8):5237-48. PubMed ID: 23769352 [TBL] [Abstract][Full Text] [Related]
20. A theoretical comparison between two ruminal electron sinks. Ungerfeld EM Front Microbiol; 2013; 4():319. PubMed ID: 24198813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]