These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 972691)
21. Degradation and metabolism of hexazinone by two isolated bacterial strains from soil. Wang X; Wang H; Tan C Chemosphere; 2005 Dec; 61(10):1468-74. PubMed ID: 15987651 [TBL] [Abstract][Full Text] [Related]
22. Degradation of acetochlor by four microbial communities. Xu J; Yang M; Dai J; Cao H; Pan C; Qiu X; Xu M Bioresour Technol; 2008 Nov; 99(16):7797-802. PubMed ID: 18331792 [TBL] [Abstract][Full Text] [Related]
23. Degradation of cyhalofop-butyl (CyB) by Pseudomonas azotoformans strain QDZ-1 and cloning of a novel gene encoding CyB-hydrolyzing esterase. Nie ZJ; Hang BJ; Cai S; Xie XT; He J; Li SP J Agric Food Chem; 2011 Jun; 59(11):6040-6. PubMed ID: 21534595 [TBL] [Abstract][Full Text] [Related]
24. [Characterization and in situ monitoring of atrazine-transforming bacteria]. Koneva ND Mikrobiologiia; 2004; 73(6):763-7. PubMed ID: 15688935 [TBL] [Abstract][Full Text] [Related]
25. Analysis of s-triazine-degrading microbial communities in soils using most-probable-number enumeration and tetrazolium-salt detection. Dinamarca MA; Cereceda-Balic F; Fadic X; Seeger M Int Microbiol; 2007 Sep; 10(3):209-15. PubMed ID: 18076003 [TBL] [Abstract][Full Text] [Related]
26. Transformation of the herbicide 2,6-dichlorobenzonitrile to the persistent metabolite 2,6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase. Holtze MS; Sørensen J; Hansen HC; Aamand J Biodegradation; 2006 Dec; 17(6):503-10. PubMed ID: 16496093 [TBL] [Abstract][Full Text] [Related]
27. Metabolic fate of the (14)C-labeled herbicide clodinafop-propargyl in soil. Jaquet J; Weitzel P; Junge T; Schmidt B J Environ Sci Health B; 2014; 49(4):245-54. PubMed ID: 24502211 [TBL] [Abstract][Full Text] [Related]
28. [Isolation and degrading characters of pendimethalin degrading bacteria]. Zhu LS; Lin AJ; Wang J; Cheng CH Huan Jing Ke Xue; 2005 Jan; 26(1):145-9. PubMed ID: 15861536 [TBL] [Abstract][Full Text] [Related]
29. Influence of microorganisms and leaching on simazine attenuation in an agricultural soil. Morgante V; Flores C; Fadic X; González M; Hernández M; Cereceda-Balic F; Seeger M J Environ Manage; 2012 Mar; 95 Suppl():S300-5. PubMed ID: 21802195 [TBL] [Abstract][Full Text] [Related]
30. Recent insights into the microbial catabolism of aryloxyphenoxy-propionate herbicides: microbial resources, metabolic pathways and catabolic enzymes. Zhou J; Liu K; Xin F; Ma J; Xu N; Zhang W; Fang Y; Jiang M; Dong W World J Microbiol Biotechnol; 2018 Jul; 34(8):117. PubMed ID: 30003364 [TBL] [Abstract][Full Text] [Related]
31. Rapid and complete degradation of the herbicide picloram by Lipomyces kononenkoae. Sadowsky MJ; Koskinen WC; Bischoff M; Barber BL; Becker JM; Turco RF J Agric Food Chem; 2009 Jun; 57(11):4878-82. PubMed ID: 19489626 [TBL] [Abstract][Full Text] [Related]
32. Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in Lolium rigidum populations. Han H; Yu Q; Owen MJ; Cawthray GR; Powles SB Pest Manag Sci; 2016 Feb; 72(2):255-63. PubMed ID: 25703739 [TBL] [Abstract][Full Text] [Related]
33. Enhanced rates of herbicide metabolism in low herbicide-dose selected resistant Lolium rigidum. Yu Q; Han H; Cawthray GR; Wang SF; Powles SB Plant Cell Environ; 2013 Apr; 36(4):818-27. PubMed ID: 23046181 [TBL] [Abstract][Full Text] [Related]
34. Plasmid-mediated catabolism of dicamba by Pseudomonas species strain PXM. Khalil A; Cork DJ Microbios; 2000; 102(403):183-91. PubMed ID: 10955833 [TBL] [Abstract][Full Text] [Related]
35. [Utilization of N,N-disec.butyl-S-benzylthiocarbamate by soil microorganisms]. Valcamonica C Nuovi Ann Ig Microbiol; 1977; 28(1):55-64. PubMed ID: 616587 [No Abstract] [Full Text] [Related]
36. Influence of microbial inoculation (Pseudomonas sp. strain ADP), the enzyme atrazine chlorohydrolase, and vegetation on the degradation of atrazine and metolachlor in soil. Zhao S; Arthur EL; Coats JR J Agric Food Chem; 2003 May; 51(10):3043-8. PubMed ID: 12720389 [TBL] [Abstract][Full Text] [Related]
37. Cometabolism of the herbicide, 2,3,6-trichlorobenzoate by natural microbial populations. Horvath RS Bull Environ Contam Toxicol; 1972 May; 7(5):273-6. PubMed ID: 5049484 [No Abstract] [Full Text] [Related]
38. Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil. Smith D; Alvey S; Crowley DE FEMS Microbiol Ecol; 2005 Jul; 53(2):265-73. PubMed ID: 16329946 [TBL] [Abstract][Full Text] [Related]
39. Pseudomonas sp. ZXY-1, a newly isolated and highly efficient atrazine-degrading bacterium, and optimization of biodegradation using response surface methodology. Zhao X; Wang L; Ma F; Bai S; Yang J; Qi S J Environ Sci (China); 2017 Apr; 54():152-159. PubMed ID: 28391924 [TBL] [Abstract][Full Text] [Related]
40. Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Preliminary evidence for the metabolic pathway. Gaunt JK; Evans WC Biochem J; 1971 May; 122(4):519-26. PubMed ID: 5123885 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]