These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 9726932)
1. Binding of transducin and transducin-derived peptides to rhodopsin studies by attenuated total reflection-Fourier transform infrared difference spectroscopy. Fahmy K Biophys J; 1998 Sep; 75(3):1306-18. PubMed ID: 9726932 [TBL] [Abstract][Full Text] [Related]
2. Transducin-dependent protonation of glutamic acid 134 in rhodopsin. Fahmy K; Sakmar TP; Siebert F Biochemistry; 2000 Aug; 39(34):10607-12. PubMed ID: 10956053 [TBL] [Abstract][Full Text] [Related]
3. Interaction between photoactivated rhodopsin and the C-terminal peptide of transducin alpha-subunit studied by FTIR spectroscopy. Nishimura S; Kandori H; Maeda A Biochemistry; 1998 Nov; 37(45):15816-24. PubMed ID: 9843387 [TBL] [Abstract][Full Text] [Related]
4. Interaction of a G protein-coupled receptor with a G protein-derived peptide induces structural changes in both peptide and receptor: a Fourier-transform infrared study using isotopically labeled peptides. Vogel R; Martell S; Mahalingam M; Engelhard M; Siebert F J Mol Biol; 2007 Mar; 366(5):1580-8. PubMed ID: 17217962 [TBL] [Abstract][Full Text] [Related]
5. Structural changes in the peptide backbone in complex formation between activated rhodopsin and transducin studied by FTIR spectroscopy. Nishimura S; Sasaki J; Kandori H; Matsuda T; Fukada Y; Maeda A Biochemistry; 1996 Oct; 35(41):13267-71. PubMed ID: 8873590 [TBL] [Abstract][Full Text] [Related]
7. Rhodopsin/transducin interactions. I. Characterization of the binding of the transducin-beta gamma subunit complex to rhodopsin using fluorescence spectroscopy. Phillips WJ; Cerione RA J Biol Chem; 1992 Aug; 267(24):17032-9. PubMed ID: 1512242 [TBL] [Abstract][Full Text] [Related]
8. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films. Salamon Z; Wang Y; Soulages JL; Brown MF; Tollin G Biophys J; 1996 Jul; 71(1):283-94. PubMed ID: 8804611 [TBL] [Abstract][Full Text] [Related]
9. Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent. Itoh Y; Cai K; Khorana HG Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4883-7. PubMed ID: 11320238 [TBL] [Abstract][Full Text] [Related]
10. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy. Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933 [TBL] [Abstract][Full Text] [Related]
11. A C-terminal peptide of bovine rhodopsin binds to the transducin alpha-subunit and facilitates its activation. Phillips WJ; Cerione RA Biochem J; 1994 Apr; 299 ( Pt 2)(Pt 2):351-7. PubMed ID: 8172594 [TBL] [Abstract][Full Text] [Related]
12. Rhodopsin activation affects the environment of specific neighboring phospholipids: an FTIR spectroscopic study. Isele J; Sakmar TP; Siebert F Biophys J; 2000 Dec; 79(6):3063-71. PubMed ID: 11106612 [TBL] [Abstract][Full Text] [Related]
13. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. Fahmy K; Jäger F; Beck M; Zvyaga TA; Sakmar TP; Siebert F Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10206-10. PubMed ID: 7901852 [TBL] [Abstract][Full Text] [Related]
14. Difference in molecular structure of rod and cone visual pigments studied by Fourier transform infrared spectroscopy. Imai H; Hirano T; Kandori H; Terakita A; Shichida Y Biochemistry; 2001 Mar; 40(9):2879-86. PubMed ID: 11258899 [TBL] [Abstract][Full Text] [Related]
15. Regulation of the rhodopsin-transducin interaction by a highly conserved carboxylic acid group. Fahmy K; Sakmar TP Biochemistry; 1993 Jul; 32(28):7229-36. PubMed ID: 8343512 [TBL] [Abstract][Full Text] [Related]
16. A mutant rhodopsin photoproduct with a protonated Schiff base displays an active-state conformation: a Fourier-transform infrared spectroscopy study. Fahmy K; Siebert F; Sakmar TP Biochemistry; 1994 Nov; 33(46):13700-5. PubMed ID: 7947779 [TBL] [Abstract][Full Text] [Related]
17. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin alpha and gamma subunits. Ernst OP; Meyer CK; Marin EP; Henklein P; Fu WY; Sakmar TP; Hofmann KP J Biol Chem; 2000 Jan; 275(3):1937-43. PubMed ID: 10636895 [TBL] [Abstract][Full Text] [Related]
18. Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy. Ganter UM; Gärtner W; Siebert F Biochemistry; 1988 Sep; 27(19):7480-8. PubMed ID: 3207686 [TBL] [Abstract][Full Text] [Related]
19. Active states of rhodopsin. Ernst OP; Bartl FJ Chembiochem; 2002 Oct; 3(10):968-74. PubMed ID: 12362361 [No Abstract] [Full Text] [Related]
20. Measurement of dipolar couplings in a transducin peptide fragment weakly bound to oriented photo-activated rhodopsin. Koenig BW; Mitchell DC; König S; Grzesiek S; Litman BJ; Bax A J Biomol NMR; 2000 Feb; 16(2):121-5. PubMed ID: 10723991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]