BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 9726934)

  • 1. Asymmetrical contributions of subunit pore regions to ion selectivity in an inward rectifier K+ channel.
    Silverman SK; Lester HA; Dougherty DA
    Biophys J; 1998 Sep; 75(3):1330-9. PubMed ID: 9726934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit.
    Chan KW; Sui JL; Vivaudou M; Logothetis DE
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):14193-8. PubMed ID: 8943083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the G-protein regulation of GIRK1 and GIRK4, the two subunits of the KACh channel, using functional homomeric mutants.
    Vivaudou M; Chan KW; Sui JL; Jan LY; Reuveny E; Logothetis DE
    J Biol Chem; 1997 Dec; 272(50):31553-60. PubMed ID: 9395492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of G protein-coupled, inward rectifier potassium channel gene products from the rat anterior pituitary gland.
    Gregerson KA; Flagg TP; O'Neill TJ; Anderson M; Lauring O; Horel JS; Welling PA
    Endocrinology; 2001 Jul; 142(7):2820-32. PubMed ID: 11416001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion selectivity filter regulates local anesthetic inhibition of G-protein-gated inwardly rectifying K+ channels.
    Slesinger PA
    Biophys J; 2001 Feb; 80(2):707-18. PubMed ID: 11159438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The K+ channel inward rectifier subunits form a channel similar to neuronal G protein-gated K+ channel.
    Velimirovic BM; Gordon EA; Lim NF; Navarro B; Clapham DE
    FEBS Lett; 1996 Jan; 379(1):31-7. PubMed ID: 8566224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of monomeric and multimeric GIRK4 subunits in rat atrial myocytes removes fast desensitization and reduces inward rectification of muscarinic K(+) current (I(K(ACh))). Evidence for functional homomeric GIRK4 channels.
    Bender K; Wellner-Kienitz MC; Inanobe A; Meyer T; Kurachi Y; Pott L
    J Biol Chem; 2001 Aug; 276(31):28873-80. PubMed ID: 11384974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional expression and characterization of G-protein-gated inwardly rectifying K+ channels containing GIRK3.
    Jelacic TM; Sims SM; Clapham DE
    J Membr Biol; 1999 May; 169(2):123-9. PubMed ID: 10341034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh.
    Corey S; Krapivinsky G; Krapivinsky L; Clapham DE
    J Biol Chem; 1998 Feb; 273(9):5271-8. PubMed ID: 9478984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A revised mechanism of action of hyperaldosteronism-linked mutations in cytosolic domains of GIRK4 (KCNJ5).
    Shalomov B; Handklo-Jamal R; Reddy HP; Theodor N; Bera AK; Dascal N
    J Physiol; 2022 Mar; 600(6):1419-1437. PubMed ID: 34957562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determinants for activation of G-protein-coupled inward rectifier K+ (GIRK) channels by extracellular acidosis.
    Mao J; Li L; McManus M; Wu J; Cui N; Jiang C
    J Biol Chem; 2002 Nov; 277(48):46166-71. PubMed ID: 12361957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gbeta binding to GIRK4 subunit is critical for G protein-gated K+ channel activation.
    Krapivinsky G; Kennedy ME; Nemec J; Medina I; Krapivinsky L; Clapham DE
    J Biol Chem; 1998 Jul; 273(27):16946-52. PubMed ID: 9642257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A C-terminal peptide of the GIRK1 subunit directly blocks the G protein-activated K+ channel (GIRK) expressed in Xenopus oocytes.
    Luchian T; Dascal N; Dessauer C; Platzer D; Davidson N; Lester HA; Schreibmayer W
    J Physiol; 1997 Nov; 505 ( Pt 1)(Pt 1):13-22. PubMed ID: 9409468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosylation of GIRK1 at Asn119 and ROMK1 at Asn117 has different consequences in potassium channel function.
    Pabon A; Chan KW; Sui JL; Wu X; Logothetis DE; Thornhill WB
    J Biol Chem; 2000 Sep; 275(39):30677-82. PubMed ID: 10889209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of G-protein-coupled inward rectifying K+ channels by intracellular acidosis.
    Mao J; Wu J; Chen F; Wang X; Jiang C
    J Biol Chem; 2003 Feb; 278(9):7091-8. PubMed ID: 12501240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of critical GIRK subunit residues disrupts N- and C-termini association and channel function.
    Sarac R; Hou P; Hurley KM; Hriciste D; Cohen NA; Nelson DJ
    J Neurosci; 2005 Feb; 25(7):1836-46. PubMed ID: 15716420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition by various antipsychotic drugs of the G-protein-activated inwardly rectifying K(+) (GIRK) channels expressed in xenopus oocytes.
    Kobayashi T; Ikeda K; Kumanishi T
    Br J Pharmacol; 2000 Apr; 129(8):1716-22. PubMed ID: 10780978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of the G protein betagamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels.
    Huang CL; Jan YN; Jan LY
    FEBS Lett; 1997 Apr; 405(3):291-8. PubMed ID: 9108307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GIRK4 confers appropriate processing and cell surface localization to G-protein-gated potassium channels.
    Kennedy ME; Nemec J; Corey S; Wickman K; Clapham DE
    J Biol Chem; 1999 Jan; 274(4):2571-82. PubMed ID: 9891030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cs+ block of the cardiac muscarinic K+ channel, GIRK1/GIRK4, is not dependent on the aspartate residue at position 173.
    Dibb KM; Leach R; Lancaster MK; Findlay JB; Boyett MR
    Pflugers Arch; 2000 Sep; 440(5):740-4. PubMed ID: 11007316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.