These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 9727022)
1. A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. Rehm BH; Krüger N; Steinbüchel A J Biol Chem; 1998 Sep; 273(37):24044-51. PubMed ID: 9727022 [TBL] [Abstract][Full Text] [Related]
2. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Rehm BH; Mitsky TA; Steinbüchel A Appl Environ Microbiol; 2001 Jul; 67(7):3102-9. PubMed ID: 11425728 [TBL] [Abstract][Full Text] [Related]
3. The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. Hoffmann N; Steinbüchel A; Rehm BH FEMS Microbiol Lett; 2000 Mar; 184(2):253-9. PubMed ID: 10713430 [TBL] [Abstract][Full Text] [Related]
5. Biochemical characterization of the Pseudomonas putida 3-hydroxyacyl ACP:CoA transacylase, which diverts intermediates of fatty acid de novo biosynthesis. Hoffmann N; Amara AA; Beermann BB; Qi Q; Hinz HJ; Rehm BH J Biol Chem; 2002 Nov; 277(45):42926-36. PubMed ID: 12200450 [TBL] [Abstract][Full Text] [Related]
6. Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. O'Leary ND; O'Connor KE; Ward P; Goff M; Dobson AD Appl Environ Microbiol; 2005 Aug; 71(8):4380-7. PubMed ID: 16085828 [TBL] [Abstract][Full Text] [Related]
7. PhaG-mediated synthesis of Poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Fiedler S; Steinbüchel A; Rehm BH Appl Environ Microbiol; 2000 May; 66(5):2117-24. PubMed ID: 10788390 [TBL] [Abstract][Full Text] [Related]
8. The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Fiedler S; Steinbüchel A; Rehm BH Arch Microbiol; 2002 Aug; 178(2):149-60. PubMed ID: 12115060 [TBL] [Abstract][Full Text] [Related]
9. Cloning and characterization of the Pseudomonas sp. 61-3 phaG gene involved in polyhydroxyalkanoate biosynthesis. Matsumoto K; Matsusaki H; Taguchi S; Seki M; Doi Y Biomacromolecules; 2001; 2(1):142-7. PubMed ID: 11749165 [TBL] [Abstract][Full Text] [Related]
10. Cloning and Characterisation of (R)-3-hydroxyacyl-acyl Carrier Protein-coenzyme A Transferase Gene (phaG) from Pseudomonas sp. USM 4-55. Arsad H; Sudesh K; Nazalan N; Muhammad TS; Wahab H; Razip Samian M Trop Life Sci Res; 2009 Dec; 20(2):1-14. PubMed ID: 24575175 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning and functional analysis of (R)-3-hydroxyacyl-acyl carrier protein:coenzyme A transacylase from Pseudomonas mendocina LZ. Zheng LZ; Li Z; Tian HL; Li M; Chen GQ FEMS Microbiol Lett; 2005 Nov; 252(2):299-307. PubMed ID: 16213672 [TBL] [Abstract][Full Text] [Related]
12. Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. Hoffmann N; Rehm BH FEMS Microbiol Lett; 2004 Aug; 237(1):1-7. PubMed ID: 15268931 [TBL] [Abstract][Full Text] [Related]
14. Cloning, characterization and comparison of the Pseudomonas mendocina polyhydroxyalkanoate synthases Phac1 and PhaC2. Hein S; Paletta JR; Steinbüchel A Appl Microbiol Biotechnol; 2002 Feb; 58(2):229-36. PubMed ID: 11878309 [TBL] [Abstract][Full Text] [Related]
15. Role of β-oxidation and de novo fatty acid synthesis in the production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Gutiérrez-Gómez U; Servín-González L; Soberón-Chávez G Appl Microbiol Biotechnol; 2019 May; 103(9):3753-3760. PubMed ID: 30919102 [TBL] [Abstract][Full Text] [Related]
16. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from gluconate and glucose by recombinant Aeromonas hydrophila and Pseudomonas putida. Qiu YZ; Han J; Guo JJ; Chen GQ Biotechnol Lett; 2005 Sep; 27(18):1381-6. PubMed ID: 16215853 [TBL] [Abstract][Full Text] [Related]
17. β-oxidation-polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited. Liu S; Narancic T; Tham JL; O'Connor KE Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1863-1874. PubMed ID: 36763117 [TBL] [Abstract][Full Text] [Related]
18. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants. Choi MH; Xu J; Gutierrez M; Yoo T; Cho YH; Yoon SC J Biotechnol; 2011 Jan; 151(1):30-42. PubMed ID: 21029757 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing. Wang X; Lin L; Dong J; Ling J; Wang W; Wang H; Zhang Z; Yu X Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030226 [TBL] [Abstract][Full Text] [Related]
20. Specific identification of (R)-3-hydroxyacyl-ACP: CoA transacylase gene from Pseudomonas and Burkholderia strains by polymerase chain reaction. Zheng Z; Chen JC; Tian HL; Bei FF; Chen GQ Sheng Wu Gong Cheng Xue Bao; 2005 Jan; 21(1):19-24. PubMed ID: 15859323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]