These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9727337)

  • 1. Mechanical blood-tissue interaction in contracting muscles: a model study.
    Vankan WJ; Huyghe JM; van Donkelaar CC; Drost MR; Janssen JD; Huson A
    J Biomech; 1998 May; 31(5):401-9. PubMed ID: 9727337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction.
    Vankan WJ; Huyghe JM; Slaaf DW; van Donkelaar CC; Drost MR; Janssen JD; Huson A
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1587-94. PubMed ID: 9321853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial interaction between tissue pressure and skeletal muscle perfusion during contraction.
    van Donkelaar CC; Huyghe JM; Vankan WJ; Drost MR
    J Biomech; 2001 May; 34(5):631-7. PubMed ID: 11311704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3-D finite element model of blood perfused rat gastrocnemius medialis muscle.
    Vankan WJ; Huyghe JM; Janssen JD; Huson A
    Eur J Morphol; 1996; 34(1):19-24. PubMed ID: 8743094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element model of intramuscular pressure during isometric contraction of skeletal muscle.
    Jenkyn TR; Koopman B; Huijing P; Lieber RL; Kaufman KR
    Phys Med Biol; 2002 Nov; 47(22):4043-61. PubMed ID: 12476981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical behavior of the arterial wall and its numerical characterization.
    Holzapfel GA; Weizsäcker HW
    Comput Biol Med; 1998 Jul; 28(4):377-92. PubMed ID: 9805198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction.
    Tsui CP; Tang CY; Leung CP; Cheng KW; Ng YF; Chow DH; Li CK
    Biomed Mater Eng; 2004; 14(3):271-9. PubMed ID: 15299239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BOLD indirect vs. ASL direct measurement of muscle perfusion.
    Leroy-Willig A
    J Appl Physiol (1985); 2005 Jul; 99(1):376-7; author reply 377. PubMed ID: 16036909
    [No Abstract]   [Full Text] [Related]  

  • 10. A dynamic nonlinear lumped parameter model for skeletal muscle circulation.
    Braakman R; Sipkema P; Westerhof N
    Ann Biomed Eng; 1989; 17(6):593-616. PubMed ID: 2589694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The capillary filtration coefficient for evaluation of capillary fluid permeability in cat calf muscles.
    Kongstad L; Grände PO
    Acta Physiol Scand; 1998 Oct; 164(2):201-11. PubMed ID: 9805107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-generating capability of the isolated skeletal muscle pump.
    Sheriff DD; Van Bibber R
    Am J Physiol; 1998 May; 274(5):H1502-8. PubMed ID: 9612356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate modelling of unsteady flows in collapsible tubes.
    Marchandise E; Flaud P
    Comput Methods Biomech Biomed Engin; 2010; 13(2):279-90. PubMed ID: 20373183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Resistance and capacitance of sural veins during electrical stimulation of ventral regions of the medulla oblongata].
    Tkachenko BI; Kudriashov IuA; Artem'eva AI; Iurov AIu; Samoĭlenko AV
    Biull Eksp Biol Med; 1998 May; 125(5):493-6. PubMed ID: 9644540
    [No Abstract]   [Full Text] [Related]  

  • 16. Muscle blood flow and distribution determine maximal VO2 of contracting muscle.
    Stainsby WN; Brechue WF; Ameredes BT
    Med Sci Sports Exerc; 1995 Jan; 27(1):43-6. PubMed ID: 7898336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced venous compliance in lower limbs of aging humans and its importance for capacitance function.
    Olsen H; Länne T
    Am J Physiol; 1998 Sep; 275(3):H878-86. PubMed ID: 9724292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rheological motor model for vertebrate skeletal muscle in due consideration of non-linearity.
    Tamura Y; Saito M
    J Biomech; 2002 Sep; 35(9):1273-7. PubMed ID: 12163316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood flow and pressure relationships which determine VO2max.
    Brechue WF; Ameredes BT; Barclay JK; Stainsby WN
    Med Sci Sports Exerc; 1995 Jan; 27(1):37-42. PubMed ID: 7898335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of arterial hypotension on microvascular oxygen exchange in contracting skeletal muscle.
    Behnke BJ; Padilla DJ; Ferreira LF; Delp MD; Musch TI; Poole DC
    J Appl Physiol (1985); 2006 Mar; 100(3):1019-26. PubMed ID: 16282435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.