BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9727367)

  • 1. Nitric oxide release as an essential mitigating step in tubuloglomerular feedback: observations during intrarenal nitric oxide clamp.
    Turkstra E; Braam B; Koomans HA
    J Am Soc Nephrol; 1998 Sep; 9(9):1596-603. PubMed ID: 9727367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative roles of nitric oxide, prostanoids and angiotensin II in the regulation of canine glomerular hemodynamics. A micropuncture study.
    Kramer HJ; Horacek V; Bäcker A; Vaneckova I; Heller J
    Kidney Blood Press Res; 2004; 27(1):10-7. PubMed ID: 14583658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal nitric oxide synthase inhibition sensitizes the tubuloglomerular feedback mechanism after volume expansion.
    Brown R; Ollerstam A; Persson AE
    Kidney Int; 2004 Apr; 65(4):1349-56. PubMed ID: 15086474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired effect by NO synthase inhibition on tubuloglomerular feedback in rats after chronic renal denervation.
    Thorup C; Kurkus J; Morsing P; Ollerstam A; Persson AE
    Acta Physiol Scand; 2000 Jan; 168(1):89-93. PubMed ID: 10691784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of endogenous endothelin and nitric oxide in tubuloglomerular feedback.
    Kawabata M; Han WH; Ise T; Kobayashi K; Takabatake T
    Kidney Int Suppl; 1996 Jun; 55():S135-7. PubMed ID: 8743535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of isoprostane on tubuloglomerular feedback: roles of TP receptors, NOS, and salt intake.
    Welch WJ
    Am J Physiol Renal Physiol; 2005 Apr; 288(4):F757-62. PubMed ID: 15613618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verapamil abolishes the preglomerular response to ANG II during intrarenal nitric oxide synthesis inhibition.
    Schnackenberg CG; Granger JP
    Am J Physiol; 1997 May; 272(5 Pt 2):R1670-6. PubMed ID: 9176363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclooxygenase 2 inhibition suppresses tubuloglomerular feedback: roles of thromboxane receptors and nitric oxide.
    Araujo M; Welch WJ
    Am J Physiol Renal Physiol; 2009 Apr; 296(4):F790-4. PubMed ID: 19144694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine A2A receptor activation attenuates tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase.
    Carlström M; Wilcox CS; Welch WJ
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F457-64. PubMed ID: 21106859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide antagonizes the actions of angiotensin II to enhance tubuloglomerular feedback responsiveness.
    Braam B; Koomans HA
    Kidney Int; 1995 Nov; 48(5):1406-11. PubMed ID: 8544396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The angiotensin receptor antagonist 2-ethoxy-1-[[2'-(1H- tetrazol-5-yl) biphenyl-4-yl]methyl]-1H-benzimidazole-7-carboxylic acid (CV11974) attenuates the tubuloglomerular feedback response during NO synthase blockade in rats.
    Kawata T; Hashimoto S; Koike T
    J Pharmacol Exp Ther; 1996 May; 277(2):572-7. PubMed ID: 8627533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of nitric oxide in tubuloglomerular feedback: effects of dietary salt.
    Welch WJ; Wilcox CS
    Clin Exp Pharmacol Physiol; 1997 Aug; 24(8):582-6. PubMed ID: 9269531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased availability of nitric oxide leads to enhanced nitric oxide dependency of tubuloglomerular feedback in the contralateral kidney of rats with 2-kidney, 1-clip Goldblatt hypertension.
    Turkstra E; Boer P; Braam B; Koomans HA
    Hypertension; 1999 Oct; 34(4 Pt 1):679-84. PubMed ID: 10523346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Nitric oxide in the renal and systemic vasodilatory responses to platelet-activating factor in the rat, in vivo.
    Handa RK; Strandhoy JW; Handa SE
    Kidney Blood Press Res; 2003; 26(3):165-75. PubMed ID: 12886044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new mechanism for the sex differences in angiotensin II-induced hypertension: the role of macula densa NOS1β-mediated tubuloglomerular feedback.
    Zhang J; Qu L; Wei J; Jiang S; Xu L; Wang L; Cheng F; Jiang K; Buggs J; Liu R
    Am J Physiol Renal Physiol; 2020 Nov; 319(5):F908-F919. PubMed ID: 33044868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal adaptation of tubuloglomerular feedback: effects of COX-2.
    Deng A; Wead LM; Blantz RC
    Kidney Int; 2004 Dec; 66(6):2348-53. PubMed ID: 15569325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TGF and nitric oxide: effects of salt intake and salt-sensitive hypertension.
    Wilcox CS; Welch WJ
    Kidney Int Suppl; 1996 Jun; 55():S9-13. PubMed ID: 8743503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of ROMK blocks macula densa tubuloglomerular feedback yet causes renal vasoconstriction in anesthetized rats.
    Araujo M; Welch WJ; Zhou X; Sullivan K; Walsh S; Pasternak A; Wilcox CS
    Am J Physiol Renal Physiol; 2017 Jun; 312(6):F1120-F1127. PubMed ID: 28228405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin II type 2 receptors and nitric oxide sustain oxygenation in the clipped kidney of early Goldblatt hypertensive rats.
    Palm F; Connors SG; Mendonca M; Welch WJ; Wilcox CS
    Hypertension; 2008 Feb; 51(2):345-51. PubMed ID: 18158356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide synthase in macula densa regulates glomerular capillary pressure.
    Wilcox CS; Welch WJ; Murad F; Gross SS; Taylor G; Levi R; Schmidt HH
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11993-7. PubMed ID: 1281548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.