These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9728880)

  • 1. Transmission electron microscopy studies of (111) twinned silver halide microcrystals.
    Goessens C; Schryvers D; Van Landuyt J
    Microsc Res Tech; 1998 Jul; 42(2):85-99. PubMed ID: 9728880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined characterization of composite tabular silver halide microcrystals by cryo-EFTEM/EELS and cryo-STEM/EDX techniques.
    Oleshko VP; Gijbels RH; Van Daele AJ; Jacob WA; Xu YE; Wang SE; Park IY; Kang TS
    Microsc Res Tech; 1998 Jul; 42(2):108-22. PubMed ID: 9728882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron microscope characterization of AgBr heterojunctions with silver carboxylates and their influence on the morphology of developed silver particles in thermally developed photomaterials.
    Bokhonov BB; Burleva LP; Whitcomb DR; Sahyun MR
    Microsc Res Tech; 1998 Jul; 42(2):152-72. PubMed ID: 9728887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of growth of AgX tabular crystals.
    Larichev TA; Kagakin EI
    Microsc Res Tech; 1998 Jul; 42(2):139-44. PubMed ID: 9728884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduction to microscopic research of silver halides and related dispersed systems.
    Oleshko V
    Microsc Res Tech; 1998 Jul; 42(2):82-4. PubMed ID: 9728879
    [No Abstract]   [Full Text] [Related]  

  • 6. Morphology and structure of photosensitive dye J-aggregates adsorbed on AgBr microcrystals grown in gelatin.
    Saijo H; Shiojiri M
    Microsc Res Tech; 1998 Jul; 42(2):123-38. PubMed ID: 9728883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research of new AgX crystal forms by transmission electron microscopy.
    Novikova LA; Kurakin SI
    Microsc Res Tech; 1998 Jul; 42(2):148-51. PubMed ID: 9728886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XPS and STM studies of pseudo-AgX monolayers organized on Ag(111) and Au/Ag(111) surfaces.
    Kawasaki M; Ishii H; Uchiki H
    Microsc Res Tech; 1998 Jul; 42(2):100-7. PubMed ID: 9728881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass crystallization of silver chloride microcrystals.
    Sechkarev BA
    Microsc Res Tech; 1998 Jul; 42(2):145-7. PubMed ID: 9728885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical microcharacterization of ultrathin iodide conversion layers and adsorbed thiocyanate surface layers on silver halide microcrystals with time-of-flight SIMS.
    Verlinden G; Gijbels R; Geuens I
    Microsc Microanal; 2002 Jun; 8(3):216-26. PubMed ID: 12533237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apatite-coated Ag/AgBr/TiO(2) visible-light photocatalyst for destruction of bacteria.
    Elahifard MR; Rahimnejad S; Haghighi S; Gholami MR
    J Am Chem Soc; 2007 Aug; 129(31):9552-3. PubMed ID: 17630741
    [No Abstract]   [Full Text] [Related]  

  • 12. Polyhedral AgBr microcrystals with an increased percentage of exposed {111} facets as a highly efficient visible-light photocatalyst.
    Wang H; Lang X; Gao J; Liu W; Wu D; Wu Y; Guo L; Li J
    Chemistry; 2012 Apr; 18(15):4620-6. PubMed ID: 22392812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface and zeta-potentials of silver halide single crystals: pH-dependence in comparison to particle systems.
    Selmani A; Lützenkirchen J; Kallay N; Preočanin T
    J Phys Condens Matter; 2014 Jun; 26(24):244104. PubMed ID: 24863080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile subsequently light-induced route to highly efficient and stable sunlight-driven Ag-AgBr plasmonic photocatalyst.
    Kuai L; Geng B; Chen X; Zhao Y; Luo Y
    Langmuir; 2010 Dec; 26(24):18723-7. PubMed ID: 21114257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals.
    Zhang LS; Wong KH; Yip HY; Hu C; Yu JC; Chan CY; Wong PK
    Environ Sci Technol; 2010 Feb; 44(4):1392-8. PubMed ID: 20085257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphism in iodotris(tri-p-tolylphosphine)silver(I).
    Venter GJ; Roodt A; Meijboom R
    Acta Crystallogr B; 2009 Apr; 65(Pt 2):182-8. PubMed ID: 19299874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria.
    Hu C; Lan Y; Qu J; Hu X; Wang A
    J Phys Chem B; 2006 Mar; 110(9):4066-72. PubMed ID: 16509698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase determination using halide ions.
    Dauter M; Dauter Z
    Methods Mol Biol; 2007; 364():149-58. PubMed ID: 17172764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis.
    Jiang J; Li H; Zhang L
    Chemistry; 2012 May; 18(20):6360-9. PubMed ID: 22517472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of AgBr nanocomposites by templated amphiphilic comb polymer.
    Koh JH; Seo JA; Park JT; Kim JH
    J Colloid Interface Sci; 2009 Oct; 338(2):486-90. PubMed ID: 19646711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.