These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9729334)

  • 1. Mechanisms of the origin of chromosomal aberrations.
    Palitti F
    Mutat Res; 1998 Aug; 404(1-2):133-7. PubMed ID: 9729334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomal aberrations: formation, identification and distribution.
    Obe G; Pfeiffer P; Savage JR; Johannes C; Goedecke W; Jeppesen P; Natarajan AT; Martínez-López W; Folle GA; Drets ME
    Mutat Res; 2002 Jul; 504(1-2):17-36. PubMed ID: 12106643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on chromosome aberration induction: what can they tell us about DNA repair?
    Bailey SM; Bedford JS
    DNA Repair (Amst); 2006 Sep; 5(9-10):1171-81. PubMed ID: 16814619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of bleomycin- and cytosine arabinoside-induced chromosome aberrations involving chromosomes 1 and 4 by painting FISH.
    Puerto S; Surrallés J; Ramírez MJ; Carbonell E; Creus A; Marcos R
    Mutat Res; 1999 Feb; 439(1):3-11. PubMed ID: 10029666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular targets and mechanisms in formation of chromosomal aberrations: contributions of Soviet scientists.
    Belyaev I
    Cytogenet Genome Res; 2004; 104(1-4):56-64. PubMed ID: 15162015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Links between chromatin structure, DNA repair and chromosome fragility.
    Surrallés J; Puerto S; Ramírez MJ; Creus A; Marcos R; Mullenders LH; Natarajan AT
    Mutat Res; 1998 Aug; 404(1-2):39-44. PubMed ID: 9729265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA damage processing and aberration formation in plants.
    Schubert I; Pecinka A; Meister A; Schubert V; Klatte M; Jovtchev G
    Cytogenet Genome Res; 2004; 104(1-4):104-8. PubMed ID: 15162022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional cell-cycle chromatin conformation changes in the presence of DNA damage result into chromatid breaks: a new insight in the formation of radiation-induced chromosomal aberrations based on the direct observation of interphase chromatin.
    Pantelias GE; Terzoudi GI
    Mutat Res; 2010 Aug; 701(1):27-37. PubMed ID: 20398788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of chromosome breakpoints: implication of the chromatin structure and nuclear architecture.
    Folle GA; Martínez-López W; Boccardo E; Obe G
    Mutat Res; 1998 Aug; 404(1-2):17-26. PubMed ID: 9729246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reflections and meditations upon complex chromosomal exchanges.
    Savage JR
    Mutat Res; 2002 Dec; 512(2-3):93-109. PubMed ID: 12464345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation induced chromosome aberrations: some biophysical considerations.
    Chadwick KH; Leenhouts HP
    Mutat Res; 1998 Aug; 404(1-2):113-7. PubMed ID: 9729318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The number and not the molecular structure of DNA double-strand breaks is more important for the formation of chromosomal aberrations: a hypothesis.
    Obe G; Johannes C; Ritter S
    Mutat Res; 2010 Aug; 701(1):3-11. PubMed ID: 20570619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin dynamics during cell cycle mediate conversion of DNA damage into chromatid breaks and affect formation of chromosomal aberrations: biological and clinical significance.
    Terzoudi GI; Hatzi VI; Donta-Bakoyianni C; Pantelias GE
    Mutat Res; 2011 Jun; 711(1-2):174-86. PubMed ID: 21185845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA double-strand breaks, chromosomal rearrangements, and genomic instability.
    Morgan WF; Corcoran J; Hartmann A; Kaplan MI; Limoli CL; Ponnaiya B
    Mutat Res; 1998 Aug; 404(1-2):125-8. PubMed ID: 9729329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA repair and chromosomal alterations.
    Natarajan AT; Palitti F
    Mutat Res; 2008 Nov; 657(1):3-7. PubMed ID: 18801460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of telomerase activity by in vivo X-irradiation of mouse splenocytes and its possible role in chromosome healing.
    Hande MP; Lansdorp PM; Natarajan AT
    Mutat Res; 1998 Aug; 404(1-2):205-14. PubMed ID: 9729387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin structure and chromosome aberrations: modeling of damage induced by isotropic and localized irradiation.
    Kreth G; Münkel C; Langowski J; Cremer T; Cremer C
    Mutat Res; 1998 Aug; 404(1-2):77-88. PubMed ID: 9729289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the nature of visible chromosomal gaps and breaks.
    Savage JR
    Cytogenet Genome Res; 2004; 104(1-4):46-55. PubMed ID: 15162014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breakpoint locations within chromosomes 1, 2, and 4 of patients with increased radiosensitivity.
    Schilling S; Keller U; Sprung CN; Weise A; Grabenbauer GG; Sauer R; Distel L
    Cancer Genet Cytogenet; 2006 Jul; 168(1):1-10. PubMed ID: 16772115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanistic modelling allows to assess pathways of DNA lesion interactions underlying chromosome aberration formation].
    Eĭdel'man IuA; Slanina SV; Sal'nikov IV; Andreev SG
    Genetika; 2012 Dec; 48(12):1427-36. PubMed ID: 23516904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.