These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9729352)

  • 61. Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins.
    Brackley PT; Bell DR; Choi SK; Nakanishi K; Usherwood PN
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1573-80. PubMed ID: 7690404
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ionotropic glutamate-receptor gene expression in hypothalamus: localization of AMPA, kainate, and NMDA receptor RNA with in situ hybridization.
    van den Pol AN; Hermans-Borgmeyer I; Hofer M; Ghosh P; Heinemann S
    J Comp Neurol; 1994 May; 343(3):428-44. PubMed ID: 8027451
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Purified unitary kainate/alpha-amino-3-hydroxy-5-methylisooxazole-propionate (AMPA) and kainate/AMPA/N-methyl-D-aspartate receptors with interchangeable subunits.
    Henley JM; Ambrosini A; Rodriguez-Ithurralde D; Sudan H; Brackley P; Kerry C; Mellor I; Abutidze K; Usherwood PN; Barnard EA
    Proc Natl Acad Sci U S A; 1992 Jun; 89(11):4806-10. PubMed ID: 1375752
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Presynaptic ionotropic glutamate receptors modulate GABA release in the mouse dorsal motor nucleus of the vagus.
    Xu H; Smith BN
    Neuroscience; 2015 Nov; 308():95-105. PubMed ID: 26343294
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Identification of a subunit-specific antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptor channels.
    Keller BU; Blaschke M; Rivosecchi R; Hollmann M; Heinemann SF; Konnerth A
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):605-9. PubMed ID: 7678460
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Thyroid hormone regulation of N-methyl-D-aspartic acid receptor subunit mRNA expression in adult brain.
    Lee PR; Brady D; Koenig JI
    J Neuroendocrinol; 2003 Jan; 15(1):87-92. PubMed ID: 12535174
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Failure to form a stable topographic map during optic nerve regeneration: abnormal activity-dependent mechanisms.
    Dunlop SA; Stirling RV; Rodger J; Symonds AC; Bancroft WJ; Tee LB; Beazley LD
    Exp Neurol; 2003 Dec; 184(2):805-15. PubMed ID: 14769373
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Interactions among GYKI-52466, cyclothiazide, and aniracetam at recombinant AMPA and kainate receptors.
    Johansen TH; Chaudhary A; Verdoorn TA
    Mol Pharmacol; 1995 Nov; 48(5):946-55. PubMed ID: 7476926
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Genetic manipulation of key determinants of ion flow in glutamate receptor channels in the mouse.
    Seeburg PH; Single F; Kuner T; Higuchi M; Sprengel R
    Brain Res; 2001 Jul; 907(1-2):233-43. PubMed ID: 11430906
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids.
    Park-Chung M; Wu FS; Purdy RH; Malayev AA; Gibbs TT; Farb DH
    Mol Pharmacol; 1997 Dec; 52(6):1113-23. PubMed ID: 9396781
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A steroid modulatory domain in NR2A collaborates with NR1 exon-5 to control NMDAR modulation by pregnenolone sulfate and protons.
    Kostakis E; Jang MK; Russek SJ; Gibbs TT; Farb DH
    J Neurochem; 2011 Nov; 119(3):486-96. PubMed ID: 21883211
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evidence for hybrid NMDA/kainate receptors from protein reconstitution studies and expression of vertebrate CNS RNAs in Xenopus oocytes.
    Usherwood PN; Barnard EA
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 Sep; 103(1):19-22. PubMed ID: 1360371
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High ethanol sensitivity of recombinant AMPA-type glutamate receptors expressed in mammalian cells.
    Lovinger DM
    Neurosci Lett; 1993 Sep; 159(1-2):83-7. PubMed ID: 7505417
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Kainate, GABAA and NMDA receptors in Xenopus oocytes expressing mRNA from the cortex of mice kindled with FG 7142.
    Lewin E; Bleck V
    Brain Res Mol Brain Res; 1996 Apr; 37(1-2):304-8. PubMed ID: 8738165
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Sensitivity of AMPA receptors to pentobarbital.
    Taverna FA; Cameron BR; Hampson DL; Wang LY; MacDonald JF
    Eur J Pharmacol; 1994 May; 267(3):R3-5. PubMed ID: 8088363
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of propofol on various AMPA-, kainate- and NMDA-selective glutamate receptor channels expressed in Xenopus oocytes.
    Yamakura T; Sakimura K; Shimoji K; Mishina M
    Neurosci Lett; 1995 Mar; 188(3):187-90. PubMed ID: 7609905
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors.
    Stern-Bach Y; Russo S; Neuman M; Rosenmund C
    Neuron; 1998 Oct; 21(4):907-18. PubMed ID: 9808475
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Phosphatidylinositol 4,5-bisphosphate depletion fails to affect neurosteroid modulation of GABAA receptor function.
    Mennerick S; Taylor AA; Zorumski CF
    Psychopharmacology (Berl); 2014 Sep; 231(17):3493-501. PubMed ID: 24553581
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Functional stoichiometry of glutamate receptor desensitization.
    Bowie D; Lange GD
    J Neurosci; 2002 May; 22(9):3392-403. PubMed ID: 11978816
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A novel allosteric potentiator of AMPA receptors: 4--2-(phenylsulfonylamino)ethylthio--2,6-difluoro-phenoxyaceta mide.
    Sekiguchi M; Fleck MW; Mayer ML; Takeo J; Chiba Y; Yamashita S; Wada K
    J Neurosci; 1997 Aug; 17(15):5760-71. PubMed ID: 9221774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.