These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9729444)

  • 1. Factors that cause the beta-anomeric preference of Na+/glucose cotransporter for intestinal transport of monosaccharide conjugates.
    Mizuma T; Nagamine Y; Dobashi A; Awazu S
    Biochim Biophys Acta; 1998 Aug; 1381(3):340-6. PubMed ID: 9729444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The beta-anomeric and glucose preferences of glucose transport carrier for intestinal active absorption of monosaccharide conjugates.
    Mizuma T; Ohta K; Awazu S
    Biochim Biophys Acta; 1994 Jul; 1200(2):117-22. PubMed ID: 8031830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal absorption of acyclovir beta-glucoside: comparative study with acyclovir, guanosine, and kinetin beta-glucoside.
    Mizuma T; Masubuchi S; Awazu S
    Pharm Res; 1999 Jan; 16(1):69-73. PubMed ID: 9950281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intestinal Na+/glucose cotransporter-mediated transport of glucose conjugate formed from disaccharide conjugate.
    Mizuma T; Awazu S
    Biochim Biophys Acta; 1998 Jan; 1379(1):1-6. PubMed ID: 9468325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport and recognition of aminopeptidase-resistant cellobiose-coupled tyrosylglycylglycine by intestinal Na+/glucose cotransporter (SGLT1): recognition of sugar conjugates by SGLT1 is much less restricted than transport.
    Mizuma T; Sakai N; Hagi K; Awazu S
    Biol Pharm Bull; 1999 Aug; 22(8):876-9. PubMed ID: 10480331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. I. Glucose galactose malabsorption.
    Wright EM
    Am J Physiol; 1998 Nov; 275(5):G879-82. PubMed ID: 9815014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum.
    Cermak R; Landgraf S; Wolffram S
    Br J Nutr; 2004 Jun; 91(6):849-55. PubMed ID: 15182388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a membrane impermeable D-glucose analogue: studies on the mechanism of nutrient regulation of the intestinal Na+/glucose co-transporter (SGLT1).
    Bagga K; Dyer J; Simmonds R; Scott D; Beechey RB; Shirazi-Beechey SP
    Biochem Soc Trans; 1997 Aug; 25(3):477S. PubMed ID: 9388698
    [No Abstract]   [Full Text] [Related]  

  • 9. Intestinal SGLT1-mediated absorption and metabolism of benzyl beta-glucoside contained in Prunus mume: carrier-mediated transport increases intestinal availability.
    Mizuma T; Nakamura M; Ina H; Miyazaki T; Hayashi M
    Biochim Biophys Acta; 2005 Mar; 1722(2):218-23. PubMed ID: 15716003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxy-terminal vesicular stomatitis virus G protein-tagged intestinal Na+-dependent glucose cotransporter (SGLT1): maintenance of surface expression and global transport function with selective perturbation of transport kinetics and polarized expression.
    Turner JR; Lencer WI; Carlson S; Madara JL
    J Biol Chem; 1996 Mar; 271(13):7738-44. PubMed ID: 8631815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and characterisation of the ovine intestinal Na+/D-glucose cotransporter (SGLT1) promoter.
    Allison GG; Wood IS; Shirazi-Beechey SP
    Biochem Soc Trans; 1998 May; 26(2):S181. PubMed ID: 9649856
    [No Abstract]   [Full Text] [Related]  

  • 12. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption.
    Martín MG; Turk E; Lostao MP; Kerner C; Wright EM
    Nat Genet; 1996 Feb; 12(2):216-20. PubMed ID: 8563765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose sensing in the intestinal epithelium.
    Dyer J; Vayro S; King TP; Shirazi-Beechey SP
    Eur J Biochem; 2003 Aug; 270(16):3377-88. PubMed ID: 12899695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-terminus loop 13 of Na+ glucose cotransporter SGLT1 contains a binding site for alkyl glucosides.
    Raja MM; Kipp H; Kinne RK
    Biochemistry; 2004 Aug; 43(34):10944-51. PubMed ID: 15323554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular uptake of dietary flavonoid quercetin 4'-beta-glucoside by sodium-dependent glucose transporter SGLT1.
    Walgren RA; Lin JT; Kinne RK; Walle T
    J Pharmacol Exp Ther; 2000 Sep; 294(3):837-43. PubMed ID: 10945831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of cycasin by the intestinal Na+/glucose cotransporter.
    Hirayama B; Hazama A; Loo DF; Wright EM; Kisby GE
    Biochim Biophys Acta; 1994 Jul; 1193(1):151-4. PubMed ID: 8038185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sigmoidal kinetics define porcine intestinal segregation of electrogenic monosaccharide transport systems as having multiple transporter population involvement.
    Subramaniam M; Enns CB; Loewen ME
    Physiol Rep; 2019 May; 7(9):e14090. PubMed ID: 31062524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal transport of beta-thioglycosides by Na+/glucose cotransporter.
    Mizuma T; Hagi K; Awazu S
    J Pharm Pharmacol; 2000 Mar; 52(3):303-10. PubMed ID: 10757418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutralization of conservative charged transmembrane residues in the Na+/glucose cotransporter SGLT1.
    Panayotova-Heiermann M; Loo DD; Lam JT; Wright EM
    Biochemistry; 1998 Jul; 37(29):10522-8. PubMed ID: 9671524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycoside binding and translocation in Na(+)-dependent glucose cotransporters: comparison of SGLT1 and SGLT3.
    Díez-Sampedro A; Lostao MP; Wright EM; Hirayama BA
    J Membr Biol; 2000 Jul; 176(2):111-7. PubMed ID: 10926676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.