These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 9729460)
21. Role of the Lysosomal Membrane Protein, CLN3, in the Regulation of Cathepsin D Activity. Cárcel-Trullols J; Kovács AD; Pearce DA J Cell Biochem; 2017 Nov; 118(11):3883-3890. PubMed ID: 28390177 [TBL] [Abstract][Full Text] [Related]
22. Identification and validation of mannose 6-phosphate glycoproteins in human plasma reveal a wide range of lysosomal and non-lysosomal proteins. Sleat DE; Wang Y; Sohar I; Lackland H; Li Y; Li H; Zheng H; Lobel P Mol Cell Proteomics; 2006 Oct; 5(10):1942-56. PubMed ID: 16709564 [TBL] [Abstract][Full Text] [Related]
23. The neuronal ceroid lipofuscinosis protein CLN5: new insights into cellular maturation, transport, and consequences of mutations. Schmiedt ML; Bessa C; Heine C; Ribeiro MG; Jalanko A; Kyttälä A Hum Mutat; 2010 Mar; 31(3):356-65. PubMed ID: 20052765 [TBL] [Abstract][Full Text] [Related]
24. Proteomic Analysis of Brain and Cerebrospinal Fluid from the Three Major Forms of Neuronal Ceroid Lipofuscinosis Reveals Potential Biomarkers. Sleat DE; Tannous A; Sohar I; Wiseman JA; Zheng H; Qian M; Zhao C; Xin W; Barone R; Sims KB; Moore DF; Lobel P J Proteome Res; 2017 Oct; 16(10):3787-3804. PubMed ID: 28792770 [TBL] [Abstract][Full Text] [Related]
25. [From gene to disease; from CLN1, CLN2 and CLN3 to neuronal ceroid lipofuscinosis]. Taschner PE; Losekoot M; Breuning MH; Hofman I; van Diggelen OP Ned Tijdschr Geneeskd; 2005 Feb; 149(6):300-3. PubMed ID: 15730038 [TBL] [Abstract][Full Text] [Related]
26. Intrathecal enzyme replacement therapy improves motor function and survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Lu JY; Nelvagal HR; Wang L; Birnbaum SG; Cooper JD; Hofmann SL Mol Genet Metab; 2015; 116(1-2):98-105. PubMed ID: 25982063 [TBL] [Abstract][Full Text] [Related]
27. Immunelectronmicroscopic characterization of T4 and T8 lymphocytes and natural killer cells in neuronal ceroid-lipofuscinosis. Kieseier BC; Goebel HH Am J Med Genet; 1995 Jun; 57(2):222-4. PubMed ID: 7668333 [TBL] [Abstract][Full Text] [Related]
28. The dystrophic retina in multisystem disorders: the electroretinogram in neuronal ceroid lipofuscinoses. Weleber RG Eye (Lond); 1998; 12 ( Pt 3b)():580-90. PubMed ID: 9775220 [TBL] [Abstract][Full Text] [Related]
29. Human pathology in NCL. Anderson GW; Goebel HH; Simonati A Biochim Biophys Acta; 2013 Nov; 1832(11):1807-26. PubMed ID: 23200925 [TBL] [Abstract][Full Text] [Related]
30. Production and characterization of recombinant human CLN2 protein for enzyme-replacement therapy in late infantile neuronal ceroid lipofuscinosis. Lin L; Lobel P Biochem J; 2001 Jul; 357(Pt 1):49-55. PubMed ID: 11415435 [TBL] [Abstract][Full Text] [Related]
31. Neural and extraneural expression of the neuronal ceroid lipofuscinoses genes CLN1, CLN2, and CLN3: functional implications for CLN3. Chattopadhyay S; Pearce DA Mol Genet Metab; 2000; 71(1-2):207-11. PubMed ID: 11001812 [TBL] [Abstract][Full Text] [Related]
32. Storage of saposins A and D in infantile neuronal ceroid-lipofuscinosis. Tyynelä J; Palmer DN; Baumann M; Haltia M FEBS Lett; 1993 Sep; 330(1):8-12. PubMed ID: 8370464 [TBL] [Abstract][Full Text] [Related]
33. Lysosomal degradation of cholecystokinin-(29-33)-amide in mouse brain is dependent on tripeptidyl peptidase-I: implications for the degradation and storage of peptides in classical late-infantile neuronal ceroid lipofuscinosis. Bernardini F; Warburton MJ Biochem J; 2002 Sep; 366(Pt 2):521-9. PubMed ID: 12038963 [TBL] [Abstract][Full Text] [Related]
34. Glycoprotein metabolism in neuronal ceroid lipofuscinosis fibroblasts. Heaney-Kieras J; Kieras FJ; Wisniewski KE Biochem Med Metab Biol; 1992 Oct; 48(2):137-42. PubMed ID: 1419145 [TBL] [Abstract][Full Text] [Related]
35. Current therapies for the soluble lysosomal forms of neuronal ceroid lipofuscinosis. Wong AM; Rahim AA; Waddington SN; Cooper JD Biochem Soc Trans; 2010 Dec; 38(6):1484-8. PubMed ID: 21118112 [TBL] [Abstract][Full Text] [Related]
36. Late infantile neuronal ceroid lipofuscinosis is due to splicing mutations in the CLN2 gene. Hartikainen JM; Ju W; Wisniewski KE; Moroziewicz DN; Kaczmarski AL; McLendon L; Zhong D; Suarez CT; Brown WT; Zhong N Mol Genet Metab; 1999 Jun; 67(2):162-8. PubMed ID: 10356316 [TBL] [Abstract][Full Text] [Related]
37. [Batten disease (Neuronal ceroid lipofuscinoses)--accumulation of ATP synthase subunit c caused by the delay of lysosomal degradation]. Ezaki J; Kominami E Nihon Rinsho; 1995 Dec; 53(12):3055-61. PubMed ID: 8577058 [TBL] [Abstract][Full Text] [Related]
38. Decreased lysosomal subunit c-degrading activity in fibroblasts from patients with late infantile neuronal ceroid lipofuscinosis. Ezaki J; Wolfe LS; Kominami E Neuropediatrics; 1997 Feb; 28(1):53-5. PubMed ID: 9151323 [TBL] [Abstract][Full Text] [Related]
39. Diagnosis of neuronal ceroid lipofuscinosis type 2 (CLN2 disease): Expert recommendations for early detection and laboratory diagnosis. Fietz M; AlSayed M; Burke D; Cohen-Pfeffer J; Cooper JD; Dvořáková L; Giugliani R; Izzo E; Jahnová H; Lukacs Z; Mole SE; Noher de Halac I; Pearce DA; Poupetova H; Schulz A; Specchio N; Xin W; Miller N Mol Genet Metab; 2016 Sep; 119(1-2):160-7. PubMed ID: 27553878 [TBL] [Abstract][Full Text] [Related]
40. The mannose 6-phosphate glycoprotein proteome. Sleat DE; Della Valle MC; Zheng H; Moore DF; Lobel P J Proteome Res; 2008 Jul; 7(7):3010-21. PubMed ID: 18507433 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]