These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 9729502)
21. The cortical thick ascending limb and early distal convoluted tubule in the urinary concentrating mechanism. Greger R; Velázquez H Kidney Int; 1987 Feb; 31(2):590-6. PubMed ID: 3550228 [No Abstract] [Full Text] [Related]
22. From Fish Physiology to Human Disease: The Discovery of the NCC, NKCC2, and the Cation-Coupled Chloride Cotransporters. Gamba G Kidney360; 2024 Jan; 5(1):133-141. PubMed ID: 37968800 [TBL] [Abstract][Full Text] [Related]
23. Analysis of renal tubular electrolyte transporter genes in seven patients with hypokalemic metabolic alkalosis. Fukuyama S; Okudaira S; Yamazato S; Yamazato M; Ohta T Kidney Int; 2003 Sep; 64(3):808-16. PubMed ID: 12911530 [TBL] [Abstract][Full Text] [Related]
24. Localization of bumetanide- and thiazide-sensitive Na-K-Cl cotransporters along the rat nephron. Yang T; Huang YG; Singh I; Schnermann J; Briggs JP Am J Physiol; 1996 Oct; 271(4 Pt 2):F931-9. PubMed ID: 8898025 [TBL] [Abstract][Full Text] [Related]
25. Changes in the sodium and potassium transporters in the course of chronic renal failure. Kim S; Heo NJ; Jung JY; Son MJ; Jang HR; Lee JW; Oh YK; Na KY; Joo KW; Han JS Nephron Physiol; 2010; 115(4):p31-41. PubMed ID: 20460940 [TBL] [Abstract][Full Text] [Related]
26. Molecular basis of Bartter's syndrome: new insights into the correlation between genotype and phenotype. Asteria C Eur J Endocrinol; 1997 Dec; 137(6):613-5. PubMed ID: 9437224 [No Abstract] [Full Text] [Related]
27. [Bartter's syndrome]. Daniluk U; Kaczmarski M; Wasilewska J; Matuszewska E; Semeniuk J; Sidor K; Krasnow A Pol Merkur Lekarski; 2004 May; 16(95):484-9. PubMed ID: 15518434 [TBL] [Abstract][Full Text] [Related]
28. Renal sodium handling for body fluid maintenance and blood pressure regulation. Matsubara M Yakugaku Zasshi; 2004 Jun; 124(6):301-9. PubMed ID: 15170065 [TBL] [Abstract][Full Text] [Related]
29. ROMK is required for expression of the 70-pS K channel in the thick ascending limb. Lu M; Wang T; Yan Q; Wang W; Giebisch G; Hebert SC Am J Physiol Renal Physiol; 2004 Mar; 286(3):F490-5. PubMed ID: 14600033 [TBL] [Abstract][Full Text] [Related]
30. Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter's syndrome and in adaptation to a high-K diet. Bailey MA; Cantone A; Yan Q; MacGregor GG; Leng Q; Amorim JB; Wang T; Hebert SC; Giebisch G; Malnic G Kidney Int; 2006 Jul; 70(1):51-9. PubMed ID: 16710355 [TBL] [Abstract][Full Text] [Related]
31. Membrane proteins involved in potassium shifts during muscle activity and fatigue. Kristensen M; Hansen T; Juel C Am J Physiol Regul Integr Comp Physiol; 2006 Mar; 290(3):R766-72. PubMed ID: 16223848 [TBL] [Abstract][Full Text] [Related]
37. Regulation of the ROMK channel: interaction of the ROMK with associate proteins. Wang W Am J Physiol; 1999 Dec; 277(6):F826-31. PubMed ID: 10600928 [TBL] [Abstract][Full Text] [Related]
38. Thick ascending limb: the Na(+):K (+):2Cl (-) co-transporter, NKCC2, and the calcium-sensing receptor, CaSR. Gamba G; Friedman PA Pflugers Arch; 2009 May; 458(1):61-76. PubMed ID: 18982348 [TBL] [Abstract][Full Text] [Related]
39. Genetic forms of renal potassium and magnesium wasting. Warnock DG Am J Med; 2002 Feb; 112(3):235-6. PubMed ID: 11893352 [No Abstract] [Full Text] [Related]