These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 9729600)

  • 41. Functional analysis of promoter sequences of cephalosporin C biosynthesis genes from Acremonium chrysogenum: specific DNA-protein interactions and characterization of the transcription factor PACC.
    Schmitt EK; Kempken R; Kück U
    Mol Genet Genomics; 2001 May; 265(3):508-18. PubMed ID: 11405634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum.
    Guan F; Pan Y; Li J; Liu G
    Sci China Life Sci; 2017 Sep; 60(9):958-967. PubMed ID: 28812298
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biosynthetic concepts for the production of β-lactam antibiotics in Penicillium chrysogenum.
    Weber SS; Bovenberg RA; Driessen AJ
    Biotechnol J; 2012 Feb; 7(2):225-36. PubMed ID: 22057844
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255.
    van den Berg MA; Westerlaken I; Leeflang C; Kerkman R; Bovenberg RA
    Fungal Genet Biol; 2007 Sep; 44(9):830-44. PubMed ID: 17548217
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of cephalosporin biosynthesis.
    Schmitt EK; Hoff B; Kück U
    Adv Biochem Eng Biotechnol; 2004; 88():1-43. PubMed ID: 15719551
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of an autoinducer of penicillin biosynthesis in Penicillium chrysogenum.
    Martín J; García-Estrada C; Rumbero A; Recio E; Albillos SM; Ullán RV; Martín JF
    Appl Environ Microbiol; 2011 Aug; 77(16):5688-96. PubMed ID: 21724894
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of Classical Strain Improvement of
    Wu M; Crismaru CG; Salo O; Bovenberg RAL; Driessen AJM
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31757830
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The critical role of plasma membrane H+-ATPase activity in cephalosporin C biosynthesis of Acremonium chrysogenum.
    Zhgun A; Dumina M; Valiakhmetov A; Eldarov M
    PLoS One; 2020; 15(8):e0238452. PubMed ID: 32866191
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gene clusters for beta-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate?
    Liras P; Martín JF
    Int Microbiol; 2006 Mar; 9(1):9-19. PubMed ID: 16636985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Advances in the regulation of cephalosporin C biosynthesis - A review].
    Liu J; Liu G
    Wei Sheng Wu Xue Bao; 2016 Mar; 56(3):461-70. PubMed ID: 27382789
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genomic mutational analysis of the impact of the classical strain improvement program on β-lactam producing Penicillium chrysogenum.
    Salo OV; Ries M; Medema MH; Lankhorst PP; Vreeken RJ; Bovenberg RA; Driessen AJ
    BMC Genomics; 2015 Nov; 16():937. PubMed ID: 26572918
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transport of substrates into peroxisomes: the paradigm of β-lactam biosynthetic intermediates.
    Martín JF; García-Estrada C; Ullán RV
    Biomol Concepts; 2013 Apr; 4(2):197-211. PubMed ID: 25436576
    [TBL] [Abstract][Full Text] [Related]  

  • 53. AcstuA, which encodes an APSES transcription regulator, is involved in conidiation, cephalosporin biosynthesis and cell wall integrity of Acremonium chrysogenum.
    Hu P; Wang Y; Zhou J; Pan Y; Liu G
    Fungal Genet Biol; 2015 Oct; 83():26-40. PubMed ID: 26283234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improvement of cephalosporin C production by recombinant DNA integration in Acremonium chrysogenum.
    Liu Y; Gong G; Xie L; Yuan N; Zhu C; Zhu B; Hu Y
    Mol Biotechnol; 2010 Feb; 44(2):101-9. PubMed ID: 19787461
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic engineering of beta-lactam antibiotic biosynthetic pathways in filamentous fungi.
    Skatrud PL
    Trends Biotechnol; 1992 Sep; 10(9):324-9. PubMed ID: 1369089
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cloning and expression analysis of the pcbAB-pcbC beta-lactam genes in the marine fungus Kallichroma tethys.
    Kim CF; Lee SK; Price J; Jack RW; Turner G; Kong RY
    Appl Environ Microbiol; 2003 Feb; 69(2):1308-14. PubMed ID: 12571064
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cloning and characterization of the isopenicillin N synthetase gene mediating the formation of the beta-lactam ring in Aspergillus nidulans.
    Ramón D; Carramolino L; Patiño C; Sánchez F; Peñalva MA
    Gene; 1987; 57(2-3):171-81. PubMed ID: 3319778
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein kinase C (PkcA) of Aspergillus nidulans is involved in penicillin production.
    Herrmann M; Spröte P; Brakhage AA
    Appl Environ Microbiol; 2006 Apr; 72(4):2957-70. PubMed ID: 16598003
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The NADP-dependent glutamate dehydrogenase gene from Penicillium chrysogenum and the construction of expression vectors for filamentous fungi.
    Díez B; Mellado E; Rodríguez M; Bernasconi E; Barredo JL
    Appl Microbiol Biotechnol; 1999 Aug; 52(2):196-207. PubMed ID: 10499259
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum.
    Nijland JG; Kovalchuk A; van den Berg MA; Bovenberg RA; Driessen AJ
    Fungal Genet Biol; 2008 Oct; 45(10):1415-21. PubMed ID: 18691664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.