These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9729804)

  • 1. Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans.
    Cerruti C; Curutchet G; Donati E
    J Biotechnol; 1998 Jul; 62(3):209-19. PubMed ID: 9729804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of bio-dissolution of spent Ni-Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate.
    Zhao L; Zhu NW; Wang XH
    Chemosphere; 2008 Jan; 70(6):974-81. PubMed ID: 17884135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of spent nickel-cadmium batteries based on bioleaching process.
    Zhu N; Zhang L; Li C; Cai C
    Waste Manag; 2003; 23(8):703-8. PubMed ID: 14522188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Metal sulfides biodegradation by "Thiobacillus ferrooxidans": effect of their total surfaces].
    Torma AE; Legault G
    Ann Microbiol (Paris); 1973 Jan; 124(1):111-21. PubMed ID: 4723414
    [No Abstract]   [Full Text] [Related]  

  • 5. Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni-Cd batteries.
    Velgosová O; Kaduková J; Marcinčáková R; Palfy P; Trpčevská J
    Waste Manag; 2013 Feb; 33(2):456-61. PubMed ID: 23131752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Different Energy Substrates and Nickel and Cadmium Ions on the Growth of Acidithiobacillus ferrooxidans and Its Application for Disposal of Ni-Cd Batteries.
    Yu ZJ; Li H; Yao JH; Wu JJ; Zhang YX; Xiao L
    Appl Biochem Biotechnol; 2020 May; 191(1):387-396. PubMed ID: 31950446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans.
    Malhotra S; Tankhiwale AS; Rajvaidya AS; Pandey RA
    Bioresour Technol; 2002 Dec; 85(3):225-34. PubMed ID: 12365488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow evaluation of the leaching hazardous materials from spent nickel-cadmium batteries discarded in different water surroundings.
    Guo X; Song Y; Nan J
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5514-5520. PubMed ID: 29218575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrite oxidation by Thiobacillus ferrooxidans with special reference to the sulphur moiety of the mineral.
    Arkesteyn GJ
    Antonie Van Leeuwenhoek; 1979; 45(3):423-35. PubMed ID: 45294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiobacillus ferrooxidans response to copper and other heavy metals: growth, protein synthesis and protein phosphorylation.
    Novo MT; da Silva AC; Moreto R; Cabral PC; Costacurta A; Garcia O; Ottoboni LM
    Antonie Van Leeuwenhoek; 2000 Feb; 77(2):187-95. PubMed ID: 10768478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biological process that reduces metals in municipal sludge to yield sulphur enhanced biosolids.
    Seth R; Henry JG; Prasad D
    Environ Technol; 2006 Feb; 27(2):159-67. PubMed ID: 16506512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilisation of Thiobacillus ferrooxidans cells on nickel alloy fibre for ferrous sulfate oxidation.
    Gómez JM; Cantero D; Webb C
    Appl Microbiol Biotechnol; 2000 Sep; 54(3):335-40. PubMed ID: 11030569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Isolation of Thiobacillus ferrooxidans and its application on heavy metal bioleaching from sewage sludge].
    Zhou S; Wang S; Yu S; Zhou L
    Huan Jing Ke Xue; 2003 May; 24(3):56-60. PubMed ID: 12916203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiobacillus acidophilus: a study of its presence in Thiobacillus ferrooxidans cultures.
    Arkesteyn GJ; de Bont JA
    Can J Microbiol; 1980 Sep; 26(9):1057-65. PubMed ID: 7459720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Role of Thiobacillus ferrooxidans in leaching Ni, Cu, Co, Fe, Al, aMg and Ca from the ores of copper-nickel deposits].
    Moshniakova SA; Karavaĭko GI; Shchetinina EV
    Mikrobiologiia; 1971; 40(6):1100-7. PubMed ID: 5130742
    [No Abstract]   [Full Text] [Related]  

  • 16. Preliminary proteomic analysis of Thiobacillus ferrooxidans growing on elemental sulphur and Fe2+ separately.
    He ZG; Hu YH; Zhong H; Hu WX; Xu J
    J Biochem Mol Biol; 2005 May; 38(3):307-13. PubMed ID: 15943906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiological leaching of a chalcopyrite concentrate by Thiobacillus ferrooxidans.
    Sakaguchi H; Silver M
    Biotechnol Bioeng; 1976 Aug; 18(8):1091-1101. PubMed ID: 953169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans.
    Kim SD; Bae JE; Park HS; Cha DK
    Environ Geochem Health; 2005 Sep; 27(3):229-35. PubMed ID: 16059779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential of mining slag as a substrate for microbial growth and the microbiological analysis of slag and slag seepage.
    Male DW; Leduc LG; Ferroni GD
    Antonie Van Leeuwenhoek; 1997 May; 71(4):379-86. PubMed ID: 9195014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tolerance of Thiobacillus ferrooxidans to some metals.
    Tuovinen OH; Niemelä SI; Gyllenberg HG
    Antonie Van Leeuwenhoek; 1971; 37(4):489-96. PubMed ID: 5316521
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.