These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9729858)

  • 1. Estimates of the ocular wave aberration from pairs of double-pass retinal images.
    Iglesias I; Berrio E; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2466-76. PubMed ID: 9729858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monochromatic aberrations and point-spread functions of the human eye across the visual field.
    Navarro R; Moreno E; Dorronsoro C
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2522-9. PubMed ID: 9729864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A population study on changes in wave aberrations with accommodation.
    Cheng H; Barnett JK; Vilupuru AS; Marsack JD; Kasthurirangan S; Applegate RA; Roorda A
    J Vis; 2004 Apr; 4(4):272-80. PubMed ID: 15134474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of wave front refraction on pupil size due to the presence of higher order aberrations.
    Iseli HP; Bueeler M; Hafezi F; Seiler T; Mrochen M
    Eur J Ophthalmol; 2005; 15(6):680-7. PubMed ID: 16329051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
    Thibos LN; Hong X; Bradley A; Cheng X
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2329-48. PubMed ID: 12469728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional simulation of eccentric photorefraction images for ametropes: factors influencing the measurement.
    Wu Y; Thibos LN; Candy TR
    Ophthalmic Physiol Opt; 2018 Jul; 38(4):432-446. PubMed ID: 29736941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrast sensitivity function and ocular higher-order wavefront aberrations in normal human eyes.
    Oshika T; Okamoto C; Samejima T; Tokunaga T; Miyata K
    Ophthalmology; 2006 Oct; 113(10):1807-12. PubMed ID: 16876865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical aberrations in the mouse eye.
    de la Cera EG; Rodríguez G; Llorente L; Schaeffel F; Marcos S
    Vision Res; 2006 Aug; 46(16):2546-53. PubMed ID: 16516259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential higher-order aberration cues for sphero-cylindrical refractive error development.
    Buehren T; Iskander DR; Collins MJ; Davis B
    Optom Vis Sci; 2007 Mar; 84(3):163-74. PubMed ID: 17435529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of higher-order aberrations in a large clinical population.
    Hartwig A; Atchison DA
    Invest Ophthalmol Vis Sci; 2012 Nov; 53(12):7862-70. PubMed ID: 23033387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the effects of secondary spherical aberration on refractive error, image quality and depth of focus.
    Xu R; Bradley A; López Gil N; Thibos LN
    Ophthalmic Physiol Opt; 2015 Jan; 35(1):28-38. PubMed ID: 25532544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling human eye aberrations and their compensation for high-resolution retinal imaging.
    Zhu L; Bartsch DU; Freeman WR; Sun PC; Fainman Y
    Optom Vis Sci; 1998 Nov; 75(11):827-39. PubMed ID: 9848838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the wave-front aberration of the eye by a fast psychophysical procedure.
    He JC; Marcos S; Webb RH; Burns SA
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2449-56. PubMed ID: 9729856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choice of reference axis in ocular wave-front aberration measurement.
    Cui C; Lakshminarayanan V
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2488-96. PubMed ID: 9729860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The change of spherical aberration during accommodation and its effect on the accommodation response.
    López-Gil N; Fernández-Sánchez V
    J Vis; 2010 Nov; 10(13):12. PubMed ID: 21075837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between ocular wavefront aberrations and refractive error in Chinese school children.
    Li T; Zhou X; Chen Z; Zhou X; Chu R; Hoffman MR
    Clin Exp Optom; 2012 Jul; 95(4):399-403. PubMed ID: 22640028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave aberrations of the isolated crystalline lens.
    Roorda A; Glasser A
    J Vis; 2003 Apr; 4(4):250-61. PubMed ID: 15134472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting subjective judgment of best focus with objective image quality metrics.
    Cheng X; Bradley A; Thibos LN
    J Vis; 2004 Apr; 4(4):310-21. PubMed ID: 15134478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding refraction and accommodation through "retinal imaging" aberrometry: a case report.
    Krueger RR; Mrochen M; Kaemmerer M; Seiler T
    Ophthalmology; 2001 Apr; 108(4):674-8. PubMed ID: 11297482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis.
    Oshika T; Tokunaga T; Samejima T; Miyata K; Kawana K; Kaji Y
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1334-8. PubMed ID: 16565365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.