These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 9730277)
1. The structure and function of yeast xylose (aldose) reductases. Lee H Yeast; 1998 Aug; 14(11):977-84. PubMed ID: 9730277 [TBL] [Abstract][Full Text] [Related]
2. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK Biochem J; 2003 Jul; 373(Pt 2):319-26. PubMed ID: 12733986 [TBL] [Abstract][Full Text] [Related]
3. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Wang JF; Wei DQ; Lin Y; Wang YH; Du HL; Li YX; Chou KC Biochem Biophys Res Commun; 2007 Jul; 359(2):323-9. PubMed ID: 17544374 [TBL] [Abstract][Full Text] [Related]
4. [The activity of xylose reductase and xylitol dehydrogenase in yeasts]. Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI Mikrobiologiia; 2003; 72(4):466-9. PubMed ID: 14526534 [TBL] [Abstract][Full Text] [Related]
5. Xylose utilisation: cloning and characterisation of the Xylose reductase from Candida tenuis. Häcker B; Habenicht A; Kiess M; Mattes R Biol Chem; 1999 Dec; 380(12):1395-403. PubMed ID: 10661866 [TBL] [Abstract][Full Text] [Related]
6. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis. Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK Biochemistry; 2002 Jul; 41(28):8785-95. PubMed ID: 12102621 [TBL] [Abstract][Full Text] [Related]
7. Binding energy and specificity in the catalytic mechanism of yeast aldose reductases. Nidetzky B; Mayr P; Hadwiger P; Stütz AE Biochem J; 1999 Nov; 344 Pt 1(Pt 1):101-7. PubMed ID: 10548539 [TBL] [Abstract][Full Text] [Related]
8. Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism. Crosas B; Hyndman DJ; Gallego O; Martras S; Parés X; Flynn TG; Farrés J Biochem J; 2003 Aug; 373(Pt 3):973-9. PubMed ID: 12732097 [TBL] [Abstract][Full Text] [Related]
9. Aldose and aldehyde reductases: structure-function studies on the coenzyme and inhibitor-binding sites. El-Kabbani O; Old SE; Ginell SL; Carper DA Mol Vis; 1999 Sep; 5():20. PubMed ID: 10493777 [TBL] [Abstract][Full Text] [Related]
10. [Activity of the key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium]. Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI Mikrobiologiia; 2004; 73(2):163-8. PubMed ID: 15198025 [TBL] [Abstract][Full Text] [Related]
11. The xylose reductase (AKR2B5) structure: homology and divergence from other aldo-keto reductases and opportunities for protein engineering. Wilson DK; Kavanagh KL; Klimacek M; Nidetzky B Chem Biol Interact; 2003 Feb; 143-144():515-21. PubMed ID: 12604237 [TBL] [Abstract][Full Text] [Related]
12. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252 [TBL] [Abstract][Full Text] [Related]
13. Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris. Handumrongkul C; Ma DP; Silva JL Appl Microbiol Biotechnol; 1998 Apr; 49(4):399-404. PubMed ID: 9615481 [TBL] [Abstract][Full Text] [Related]
14. All in the family: aldose reductase and closely related aldo-keto reductases. Petrash JM Cell Mol Life Sci; 2004 Apr; 61(7-8):737-49. PubMed ID: 15094999 [TBL] [Abstract][Full Text] [Related]
15. Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Träff KL; Jönsson LJ; Hahn-Hägerdal B Yeast; 2002 Oct; 19(14):1233-41. PubMed ID: 12271459 [TBL] [Abstract][Full Text] [Related]
16. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies. Nidetzky B; Brüggler K; Kratzer R; Mayr P J Agric Food Chem; 2003 Dec; 51(27):7930-5. PubMed ID: 14690376 [TBL] [Abstract][Full Text] [Related]
17. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase. Kratzer R; Wilson DK; Nidetzky B IUBMB Life; 2006 Sep; 58(9):499-507. PubMed ID: 17002977 [TBL] [Abstract][Full Text] [Related]
18. Purification and biochemical characterization of a moderately halotolerant NADPH dependent xylose reductase from Debaryomyces nepalensis NCYC 3413. Kumar S; Gummadi SN Bioresour Technol; 2011 Oct; 102(20):9710-7. PubMed ID: 21855330 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of yeast xylose reductase in complex with a novel NADP-DTT adduct provides insights into substrate recognition and catalysis. Paidimuddala B; Mohapatra SB; Gummadi SN; Manoj N FEBS J; 2018 Dec; 285(23):4445-4464. PubMed ID: 30269423 [TBL] [Abstract][Full Text] [Related]
20. Structural and functional properties of aldose xylose reductase from the D-xylose-metabolizing yeast Candida tenuis. Nidetzky B; Mayr P; Neuhauser W; Puchberger M Chem Biol Interact; 2001 Jan; 130-132(1-3):583-95. PubMed ID: 11306077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]