These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9730277)

  • 21. Sequence and analysis of an aldose (xylose) reductase gene from the xylose-fermenting yeast Pachysolen tannophilus.
    Bolen PL; Hayman GT; Shepherd HS
    Yeast; 1996 Oct; 12(13):1367-75. PubMed ID: 8923742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural features of the aldose reductase and aldehyde reductase inhibitor-binding sites.
    El-Kabbani O; Wilson DK; Petrash M; Quiocho FA
    Mol Vis; 1998 Sep; 4():19. PubMed ID: 9756955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae.
    Träff-Bjerre KL; Jeppsson M; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2004 Jan; 21(2):141-50. PubMed ID: 14755639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of lysine-78 as an essential residue in the Saccharomyces cerevisiae xylose reductase.
    Jeong EY; Kim IS; Lee H
    FEMS Microbiol Lett; 2002 Apr; 209(2):223-8. PubMed ID: 12007809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases.
    Bohren KM; Bullock B; Wermuth B; Gabbay KH
    J Biol Chem; 1989 Jun; 264(16):9547-51. PubMed ID: 2498333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase.
    Jeong EY; Sopher C; Kim IS; Lee H
    Yeast; 2001 Aug; 18(11):1081-9. PubMed ID: 11481678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Xylitol dehydrogenase from Candida tropicalis: molecular cloning of the gene and structural analysis of the protein.
    Lima LH; Pinheiro CG; de Moraes LM; de Freitas SM; Torres FA
    Appl Microbiol Biotechnol; 2006 Dec; 73(3):631-9. PubMed ID: 16896602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the human aldehyde reductase gene and promoter.
    Barski OA; Gabbay KH; Bohren KM
    Genomics; 1999 Sep; 60(2):188-98. PubMed ID: 10486210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the active site of yeast xylose reductase by site-directed mutagenesis of sequence motifs characteristic of two dehydrogenase/reductase family types.
    Klimacek M; Szekely M; Griessler R; Nidetzky B
    FEBS Lett; 2001 Jul; 500(3):149-52. PubMed ID: 11445075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of aldehyde reductase holoenzyme in complex with the potent aldose reductase inhibitor fidarestat: implications for inhibitor binding and selectivity.
    El-Kabbani O; Carbone V; Darmanin C; Oka M; Mitschler A; Podjarny A; Schulze-Briese C; Chung RP
    J Med Chem; 2005 Aug; 48(17):5536-42. PubMed ID: 16107153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterisation of genes encoding two novel members of the aldo-keto reductase superfamily.
    Dalrymple BP; Peters JM; Vuocolo T
    Biochem Int; 1992 Dec; 28(4):651-7. PubMed ID: 1482401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae.
    Chang Q; Griest TA; Harter TM; Petrash JM
    Biochim Biophys Acta; 2007 Mar; 1773(3):321-9. PubMed ID: 17140678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of the catalytic and inhibitory properties of Pachysolen tannophilus xylose reductase to rat lens aldose reductase.
    Davis RA; DeRuiter J
    Appl Microbiol Biotechnol; 1992 Apr; 37(1):109-13. PubMed ID: 1368496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prostaglandin F2alpha synthase activities of aldo-keto reductase 1B1, 1B3 and 1B7.
    Kabututu Z; Manin M; Pointud JC; Maruyama T; Nagata N; Lambert S; Lefrançois-Martinez AM; Martinez A; Urade Y
    J Biochem; 2009 Feb; 145(2):161-8. PubMed ID: 19010934
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the role of a conserved glycine motif in the Saccharomyces cerevisiae xylose reductase.
    Chu BC; Lee H
    Curr Microbiol; 2006 Aug; 53(2):118-23. PubMed ID: 16802208
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization and identification of three novel aldo-keto reductases from Lodderomyces elongisporus for reducing ethyl 4-chloroacetoacetate.
    Ning C; Su E; Wei D
    Arch Biochem Biophys; 2014 Dec; 564():219-28. PubMed ID: 25447817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MDR quinone oxidoreductases: the human and yeast zeta-crystallins.
    Porté S; Crosas E; Yakovtseva E; Biosca JA; Farrés J; Fernández MR; Parés X
    Chem Biol Interact; 2009 Mar; 178(1-3):288-94. PubMed ID: 19007762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.