These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 9730655)

  • 21. Probing individual molecules with confocal fluorescence microscopy.
    Nie S; Chiu DT; Zare RN
    Science; 1994 Nov; 266(5187):1018-21. PubMed ID: 7973650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo confocal laser scanning microscopy and micropuncture in intact rat.
    Ohno Y; Birn H; Christensen EI
    Nephron Exp Nephrol; 2005; 99(1):e17-25. PubMed ID: 15637463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-speed confocal fluorescence imaging with a novel line scanning microscope.
    Wolleschensky R; Zimmermann B; Kempe M
    J Biomed Opt; 2006; 11(6):064011. PubMed ID: 17212534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study.
    Zheng W; Harris M; Kho KW; Thong PS; Hibbs A; Olivo M; Soo KC
    Oncol Rep; 2004 Aug; 12(2):397-401. PubMed ID: 15254708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell membrane fluidity in the intact kidney proximal tubule measured by orientation-independent fluorescence anisotropy imaging.
    Fushimi K; Dix JA; Verkman AS
    Biophys J; 1990 Feb; 57(2):241-54. PubMed ID: 2317549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging.
    Swindle LD; Thomas SG; Freeman M; Delaney PM
    J Invest Dermatol; 2003 Oct; 121(4):706-12. PubMed ID: 14632185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frequency division multiplexed multichannel high-speed fluorescence confocal microscope.
    Wu F; Zhang X; Cheung JY; Shi K; Liu Z; Luo C; Yin S; Ruffin P
    Biophys J; 2006 Sep; 91(6):2290-6. PubMed ID: 16815894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Confocal and two-photon microscopy.
    Peti-Peterdi J; Bell PD
    Methods Mol Med; 2003; 86():129-38. PubMed ID: 12886765
    [No Abstract]   [Full Text] [Related]  

  • 29. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence imaging study of organic anion transport from renal proximal tubule cell to lumen.
    Miller DS; Letcher S; Barnes DM
    Am J Physiol; 1996 Sep; 271(3 Pt 2):F508-20. PubMed ID: 8853412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneity in ATP-dependent acidification in endocytic vesicles from kidney proximal tubule. Measurement of pH in individual endocytic vesicles in a cell-free system.
    Shi LB; Fushimi K; Bae HR; Verkman AS
    Biophys J; 1991 Jun; 59(6):1208-17. PubMed ID: 1714779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Confocal fluorescent intravital microscopy of the murine spleen.
    Grayson MH; Chaplin DD; Karl IE; Hotchkiss RS
    J Immunol Methods; 2001 Oct; 256(1-2):55-63. PubMed ID: 11516755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential distribution of actin and cytokeratin in isolated full-length rabbit renal tubules.
    Goto K; Ishikawa H
    Cell Struct Funct; 1998 Apr; 23(2):73-84. PubMed ID: 9669035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active lucifer yellow secretion in renal proximal tubule: evidence for organic anion transport system crossover.
    Masereeuw R; Moons MM; Toomey BH; Russel FG; Miller DS
    J Pharmacol Exp Ther; 1999 May; 289(2):1104-11. PubMed ID: 10215693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy.
    Sandoval RM; Kennedy MD; Low PS; Molitoris BA
    Am J Physiol Cell Physiol; 2004 Aug; 287(2):C517-26. PubMed ID: 15102609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Live-Animal Imaging of Renal Function by Multiphoton Microscopy.
    Dunn KW; Sutton TA; Sandoval RM
    Curr Protoc Cytom; 2018 Jan; 83():12.9.1-12.9.25. PubMed ID: 29345326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-photon microscopy: visualization of kidney dynamics.
    Ashworth SL; Sandoval RM; Tanner GA; Molitoris BA
    Kidney Int; 2007 Aug; 72(4):416-21. PubMed ID: 17538570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-laser dual-immunofluorescence confocal laser scanning microscopy using Cy2- and Cy5-conjugated secondary antibodies: unequivocal detection of co-localization of neuronal markers.
    Wouterlood FG; Van Denderen JC; Blijleven N; Van Minnen J; Härtig W
    Brain Res Brain Res Protoc; 1998 Jan; 2(2):149-59. PubMed ID: 9473644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated method for tracking vast numbers of FITC-labeled RBCs in microvessels of rat brain in vivo using a high-speed confocal microscope system.
    Tomita M; Osada T; Schiszler I; Tomita Y; Unekawa M; Toriumi H; Tanahashi N; Suzuki N
    Microcirculation; 2008 Feb; 15(2):163-74. PubMed ID: 18260006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of red laser video-rate scanning confocal microscopy to in vivo assessment of tubular function in the rat: selective action of diuretics on tubular diameter.
    Simeoni M; Boyde A; Shirley DG; Capasso G; Unwin RJ
    Exp Physiol; 2004 Mar; 89(2):181-5. PubMed ID: 15123547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.