These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1108 related articles for article (PubMed ID: 9730824)
1. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q; Klinman JP Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824 [TBL] [Abstract][Full Text] [Related]
2. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation. Su Q; Klinman JP Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105 [TBL] [Abstract][Full Text] [Related]
3. Relationship of stopped flow to steady state parameters in the dimeric copper amine oxidase from Hansenula polymorpha and the role of zinc in inhibiting activity at alternate copper-containing subunits. Takahashi K; Klinman JP Biochemistry; 2006 Apr; 45(14):4683-94. PubMed ID: 16584203 [TBL] [Abstract][Full Text] [Related]
4. Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism. Welford RW; Lam A; Mirica LM; Klinman JP Biochemistry; 2007 Sep; 46(38):10817-27. PubMed ID: 17760423 [TBL] [Abstract][Full Text] [Related]
5. Kinetic isotope effects as probes of the mechanism of galactose oxidase. Whittaker MM; Ballou DP; Whittaker JW Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494 [TBL] [Abstract][Full Text] [Related]
6. An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from Hansenula polymorpha. Plastino J; Green EL; Sanders-Loehr J; Klinman JP Biochemistry; 1999 Jun; 38(26):8204-16. PubMed ID: 10387066 [TBL] [Abstract][Full Text] [Related]
7. Kinetic and structural studies on the catalytic role of the aspartic acid residue conserved in copper amine oxidase. Chiu YC; Okajima T; Murakawa T; Uchida M; Taki M; Hirota S; Kim M; Yamaguchi H; Kawano Y; Kamiya N; Kuroda S; Hayashi H; Yamamoto Y; Tanizawa K Biochemistry; 2006 Apr; 45(13):4105-20. PubMed ID: 16566584 [TBL] [Abstract][Full Text] [Related]
8. Binding of dioxygen to non-metal sites in proteins: exploration of the importance of binding site size versus hydrophobicity in the copper amine oxidase from Hansenula polymorpha. Goto Y; Klinman JP Biochemistry; 2002 Nov; 41(46):13637-43. PubMed ID: 12427025 [TBL] [Abstract][Full Text] [Related]
9. Chemical and kinetic reaction mechanisms of quinohemoprotein amine dehydrogenase from Paracoccus denitrificans. Sun D; Ono K; Okajima T; Tanizawa K; Uchida M; Yamamoto Y; Mathews FS; Davidson VL Biochemistry; 2003 Sep; 42(37):10896-903. PubMed ID: 12974623 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of O2 activation by cytochrome P450cam studied by isotope effects and transient state kinetics. Purdy MM; Koo LS; de Montellano PR; Klinman JP Biochemistry; 2006 Dec; 45(51):15793-806. PubMed ID: 17176102 [TBL] [Abstract][Full Text] [Related]
11. Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes. Kishishita S; Okajima T; Kim M; Yamaguchi H; Hirota S; Suzuki S; Kuroda S; Tanizawa K; Mure M J Am Chem Soc; 2003 Jan; 125(4):1041-55. PubMed ID: 12537504 [TBL] [Abstract][Full Text] [Related]
12. The nature of O2 reactivity leading to topa quinone in the copper amine oxidase from Hansenula polymorpha and its relationship to catalytic turnover. DuBois JL; Klinman JP Biochemistry; 2005 Aug; 44(34):11381-8. PubMed ID: 16114875 [TBL] [Abstract][Full Text] [Related]
13. Role of a strictly conserved active site tyrosine in cofactor genesis in the copper amine oxidase from Hansenula polymorpha. DuBois JL; Klinman JP Biochemistry; 2006 Mar; 45(10):3178-88. PubMed ID: 16519513 [TBL] [Abstract][Full Text] [Related]
14. Mechanism-based inactivation of a yeast methylamine oxidase mutant: implications for the functional role of the consensus sequence surrounding topaquinone. Cai D; Dove J; Nakamura N; Sanders-Loehr J; Klinman JP Biochemistry; 1997 Sep; 36(38):11472-8. PubMed ID: 9298967 [TBL] [Abstract][Full Text] [Related]
15. 2,4,5-Trihydroxyphenylalanine quinone biogenesis in the copper amine oxidase from Hansenula polymorpha with the alternate metal nickel. Samuels NM; Klinman JP Biochemistry; 2005 Nov; 44(43):14308-17. PubMed ID: 16245947 [TBL] [Abstract][Full Text] [Related]
16. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion. Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053 [TBL] [Abstract][Full Text] [Related]
18. Intramolecular electron transfer rate between active-site copper and TPQ in Arthrobacter globiformis amine oxidase. Shepard EM; Dooley DM J Biol Inorg Chem; 2006 Nov; 11(8):1039-48. PubMed ID: 16924556 [TBL] [Abstract][Full Text] [Related]
19. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations. Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113 [TBL] [Abstract][Full Text] [Related]
20. Mechanism-based cofactor derivatization of a copper amine oxidase by a branched primary amine recruits the oxidase activity of the enzyme to turn inactivator into substrate. Qiao C; Ling KQ; Shepard EM; Dooley DM; Sayre LM J Am Chem Soc; 2006 May; 128(18):6206-19. PubMed ID: 16669691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]