BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2693 related articles for article (PubMed ID: 9730824)

  • 21. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutation of a strictly conserved, active-site residue alters substrate specificity and cofactor biogenesis in a copper amine oxidase.
    Hevel JM; Mills SA; Klinman JP
    Biochemistry; 1999 Mar; 38(12):3683-93. PubMed ID: 10090756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition and oxygen activation in copper amine oxidases.
    Shepard EM; Dooley DM
    Acc Chem Res; 2015 May; 48(5):1218-26. PubMed ID: 25897668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron transfer from the aminosemiquinone reaction intermediate of methylamine dehydrogenase to amicyanin.
    Bishop GR; Davidson VL
    Biochemistry; 1998 Aug; 37(31):11026-32. PubMed ID: 9692997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of bis(dithiolene)dioxomolybdenum(VI) complexes from bis(dithiolene)monooxomolybdenum(IV) complexes by proton-coupled electron transfer in aqueous media.
    Sugimoto H; Tano H; Miyake H; Itoh S
    Dalton Trans; 2011 Mar; 40(10):2358-65. PubMed ID: 21246143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stopped flow kinetic studies on reductive half-reaction of histamine dehydrogenase from Nocardioides simplex with histamine.
    Tsutsumi M; Tsujimura S; Shirai O; Kano K
    J Biochem; 2010 Jul; 148(1):47-54. PubMed ID: 20305273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isotopic probes yield microscopic constants: separation of binding energy from catalytic efficiency in the bovine plasma amine oxidase reaction.
    Palcic MM; Klinman JP
    Biochemistry; 1983 Dec; 22(25):5957-66. PubMed ID: 6661419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism.
    Sucharitakul J; Wongnate T; Chaiyen P
    Biochemistry; 2010 May; 49(17):3753-65. PubMed ID: 20359206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Cu(I)-semiquinone state in substrate-reduced amine oxidases.
    Dooley DM; McGuirl MA; Brown DE; Turowski PN; McIntire WS; Knowles PF
    Nature; 1991 Jan; 349(6306):262-4. PubMed ID: 1846226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-function studies of substrate oxidation by bovine serum amine oxidase: relationship to cofactor structure and mechanism.
    Hartmann C; Klinman JP
    Biochemistry; 1991 May; 30(18):4605-11. PubMed ID: 1850627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure, mechanism, and conformational dynamics of O-acetylserine sulfhydrylase from Salmonella typhimurium: comparison of A and B isozymes.
    Chattopadhyay A; Meier M; Ivaninskii S; Burkhard P; Speroni F; Campanini B; Bettati S; Mozzarelli A; Rabeh WM; Li L; Cook PF
    Biochemistry; 2007 Jul; 46(28):8315-30. PubMed ID: 17583914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic studies on the reaction between Trametes villosa laccase and dioxygen.
    Bukh C; Lund M; Bjerrum MJ
    J Inorg Biochem; 2006 Sep; 100(9):1547-57. PubMed ID: 16828870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactions of copper(II)-phenol systems with O2: models for TPQ biosynthesis in copper amine oxidases.
    Tabuchi K; Ertem MZ; Sugimoto H; Kunishita A; Tano T; Fujieda N; Cramer CJ; Itoh S
    Inorg Chem; 2011 Mar; 50(5):1633-47. PubMed ID: 21284380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics of electron and proton transfer during the reaction of wild type and helix VI mutants of cytochrome bo3 with oxygen.
    Svensson-Ek M; Thomas JW; Gennis RB; Nilsson T; Brzezinski P
    Biochemistry; 1996 Oct; 35(42):13673-80. PubMed ID: 8885847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the catalytic mechanism of choline oxidase.
    Fan F; Gadda G
    J Am Chem Soc; 2005 Feb; 127(7):2067-74. PubMed ID: 15713082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 135.