These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9730961)

  • 1. Stimulation of Na+-K+-2Cl- cotransporter in neuronal cells by excitatory neurotransmitter glutamate.
    Sun D; Murali SG
    Am J Physiol; 1998 Sep; 275(3):C772-9. PubMed ID: 9730961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of Na-K-2Cl cotransporter in neurons by activation of Non-NMDA ionotropic receptor and group-I mGluRs.
    Schomberg SL; Su G; Haworth RA; Sun D
    J Neurophysiol; 2001 Jun; 85(6):2563-75. PubMed ID: 11387401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+-K+-2Cl- cotransporter in immature cortical neurons: A role in intracellular Cl- regulation.
    Sun D; Murali SG
    J Neurophysiol; 1999 Apr; 81(4):1939-48. PubMed ID: 10200228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation by ionotropic excitatory amino acids and potassium of (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid-stimulated phosphoinositide hydrolysis in mouse cerebellar granule cells.
    Gorman AM; Grieve A; Griffiths R
    J Neurochem; 1995 Dec; 65(6):2473-83. PubMed ID: 7595541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate-stimulated neuropeptide Y mRNA expression in the rat dentate gyrus: a prominent role of metabotropic glutamate receptors.
    Schwarzer C; Sperk G
    Hippocampus; 1998; 8(3):274-88. PubMed ID: 9662141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Na+,K+,2Cl-cotransport system in HeLa cells: aspects of its physiological regulation.
    Kort JJ; Koch G
    J Cell Physiol; 1990 Nov; 145(2):253-61. PubMed ID: 2174063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of vascular endothelial cell volume by Na-K-2Cl cotransport.
    O'Neill WC; Klein JD
    Am J Physiol; 1992 Feb; 262(2 Pt 1):C436-44. PubMed ID: 1539632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of Ca2+ and protein tyrosine kinase in insulin action on cell volume via Na+ and K+ channels and Na+/K+/2Cl- cotransporter in fetal rat alveolar type II pneumocyte.
    Marunaka Y; Niisato N; O'Brodovich H; Post M; Tanswell AK
    J Membr Biol; 1999 Mar; 168(1):91-101. PubMed ID: 10051692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of spinal glutamatergic receptors to the antinociception caused by agmatine in mice.
    Gadotti VM; Tibola D; Paszcuk AF; Rodrigues AL; Calixto JB; Santos AR
    Brain Res; 2006 Jun; 1093(1):116-22. PubMed ID: 16765330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabotropic glutamate receptor in C6BU-1 glioma cell has NMDA receptor-ion channel complex-like properties and interacts with serotonin2 receptor-stimulated signal transduction.
    Shinno H; Mikuni M; Saitoh K; Tomita U; Yamawaki S; Takahashi K
    J Neurochem; 1994 Oct; 63(4):1346-53. PubMed ID: 7523590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary structure, functional expression, and chromosomal localization of the bumetanide-sensitive Na-K-Cl cotransporter in human colon.
    Payne JA; Xu JC; Haas M; Lytle CY; Ward D; Forbush B
    J Biol Chem; 1995 Jul; 270(30):17977-85. PubMed ID: 7629105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitatory amino acid-induced slow biphasic responses of free intracellular calcium in human neuroblastoma cells.
    Naarala J; Nykvist P; Tuomala M; Savolainen K
    FEBS Lett; 1993 Sep; 330(2):222-6. PubMed ID: 7689986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Na-K-Cl cotransporters.
    Haas M
    Am J Physiol; 1994 Oct; 267(4 Pt 1):C869-85. PubMed ID: 7943281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of bradykinin on Na-K-2Cl cotransport and bumetanide binding in aortic endothelial cells.
    Klein JD; O'Neill WC
    J Biol Chem; 1990 Dec; 265(36):22238-42. PubMed ID: 2266124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate receptor regulation of rat nucleus accumbens neurons in vivo.
    Hu XT; White FJ
    Synapse; 1996 Jul; 23(3):208-18. PubMed ID: 8807749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na-K-2Cl cotransport in intestinal epithelial cells. Influence of chloride efflux and F-actin on regulation of cotransporter activity and bumetanide binding.
    Matthews JB; Smith JA; Tally KJ; Awtrey CS; Nguyen H; Rich J; Madara JL
    J Biol Chem; 1994 Jun; 269(22):15703-9. PubMed ID: 8195222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate receptor agonists modulate [Ca2+]i in isolated rat melanotropes.
    Giovannucci DR; Stuenkel EL
    Neuroendocrinology; 1995 Aug; 62(2):111-22. PubMed ID: 8584110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of neuropeptide FF release from rat spinal cord slices by glutamate. Involvement of NMDA receptors.
    Devillers JP; Simonnet G
    Eur J Pharmacol; 1994 Dec; 271(1):185-92. PubMed ID: 7535231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Na-K-Cl cotransporters.
    Haas M; Forbush B
    J Bioenerg Biomembr; 1998 Apr; 30(2):161-72. PubMed ID: 9672238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Na-K-2Cl cotransport in osteoblasts.
    Whisenant N; Zhang BX; Khademazad M; Loessberg P; Muallem S
    Am J Physiol; 1991 Sep; 261(3 Pt 1):C433-40. PubMed ID: 1716050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.