These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9730972)

  • 1. Control of AMP deaminase 1 binding to myosin heavy chain.
    Hisatome I; Morisaki T; Kamma H; Sugama T; Morisaki H; Ohtahara A; Holmes EW
    Am J Physiol; 1998 Sep; 275(3):C870-81. PubMed ID: 9730972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of functional domains in AMPD1 by mutational analysis.
    Gross M; Morisaki H; Morisaki T; Holmes EW
    Biochem Biophys Res Commun; 1994 Dec; 205(2):1010-7. PubMed ID: 7802626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergent N-terminal regions in AMP deaminase and isoform-specific catalytic properties of the enzyme.
    Bausch-Jurken MT; Sabina RL
    Arch Biochem Biophys; 1995 Aug; 321(2):372-80. PubMed ID: 7646062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of N-terminal sequences in human AMP deaminase isoforms that influence contractile protein binding.
    Mahnke-Zizelman DK; Sabina RL
    Biochem Biophys Res Commun; 2001 Jul; 285(2):489-95. PubMed ID: 11444869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both the amino and carboxyl termini of Dictyostelium myosin essential light chain are required for binding to myosin heavy chain.
    Ho G; Chen TL; Chisholm RL
    J Biol Chem; 1995 Nov; 270(46):27977-81. PubMed ID: 7499275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of skeletal muscle AMP deaminase. Carbethoxylation of His-51 belonging to the zinc coordination sphere of the rabbit enzyme promotes its desensitization towards the inhibition by ATP.
    Ronca F; Raggi A
    Biochim Biophys Acta Gen Subj; 2022 Feb; 1866(2):130044. PubMed ID: 34710488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the HPRG Component of Striated Muscle AMP Deaminase in the Stability and Cellular Behaviour of the Enzyme.
    Ronca F; Raggi A
    Biomolecules; 2018 Aug; 8(3):. PubMed ID: 30142952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel aspects of tetramer assembly and N-terminal domain structure and function are revealed by recombinant expression of human AMP deaminase isoforms.
    Mahnke-Zizelman DK; Tullson PC; Sabina RL
    J Biol Chem; 1998 Dec; 273(52):35118-25. PubMed ID: 9857047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionally distinct elements are required for expression of the AMPD1 gene in myocytes.
    Morisaki T; Holmes EW
    Mol Cell Biol; 1993 Sep; 13(9):5854-60. PubMed ID: 8355716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of rat AMP deaminase 3 (isoform C) by development and skeletal muscle fibre type.
    Mahnke-Zizelman DK; D'cunha J; Wojnar JM; Brogley MA; Sabina RL
    Biochem J; 1997 Sep; 326 ( Pt 2)(Pt 2):521-9. PubMed ID: 9291127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative splicing: a mechanism for phenotypic rescue of a common inherited defect.
    Morisaki H; Morisaki T; Newby LK; Holmes EW
    J Clin Invest; 1993 May; 91(5):2275-80. PubMed ID: 8486786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning of human AMP deaminase isoform E cDNAs. Evidence for a third AMPD gene exhibiting alternatively spliced 5'-exons.
    Mahnke-Zizelman DK; Sabina RL
    J Biol Chem; 1992 Oct; 267(29):20866-77. PubMed ID: 1400401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a noncatalytic domain in AMP deaminase that influences binding to myosin.
    Marquetant R; Sabina RL; Holmes EW
    Biochemistry; 1989 Oct; 28(22):8744-9. PubMed ID: 2605218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pharmacological AMP deaminase inhibition and Ampd1 deletion on nucleotide levels and AMPK activation in contracting skeletal muscle.
    Plaideau C; Lai YC; Kviklyte S; Zanou N; Löfgren L; Andersén H; Vertommen D; Gailly P; Hue L; Bohlooly-Y M; Hallén S; Rider MH
    Chem Biol; 2014 Nov; 21(11):1497-1510. PubMed ID: 25459662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization and expression patterns of AMP deaminase1 (AMPD1) in porcine skeletal muscle.
    Wang L; Mo X; Xu Y; Zuo B; Lei M; Li F; Jiang S; Deng C; Xiong Y
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Oct; 151(2):159-66. PubMed ID: 18638563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subunit composition of AMPD varies in response to changes in AMPD1 and AMPD3 gene expression in skeletal muscle.
    Fortuin FD; Morisaki T; Holmes EW
    Proc Assoc Am Physicians; 1996 Jul; 108(4):329-33. PubMed ID: 8863347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of purified skeletal-muscle AMP deaminase with a histidine-proline-rich-glycoprotein-like molecule.
    Ranieri-Raggi M; Montali U; Ronca F; Sabbatini A; Brown PE; Moir AJ; Raggi A
    Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):641-8. PubMed ID: 9307011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide regulates smooth-muscle-specific myosin heavy chain gene expression at the transcriptional level-possible role of SRF and YY1 through CArG element.
    Itoh S; Katoh Y; Konishi H; Takaya N; Kimura T; Periasamy M; Yamaguchi H
    J Mol Cell Cardiol; 2001 Jan; 33(1):95-107. PubMed ID: 11133226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal sequence and distal histidine residues are responsible for pH-regulated cytoplasmic membrane binding of human AMP deaminase isoform E.
    Mahnke-Zizelman DK; Sabina RL
    J Biol Chem; 2002 Nov; 277(45):42654-62. PubMed ID: 12213808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards an understanding of the functional significance of N-terminal domain divergence in human AMP deaminase isoforms.
    Sabina RL; Mahnke-Zizelman DK
    Pharmacol Ther; 2000; 87(2-3):279-83. PubMed ID: 11008004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.