BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 9730975)

  • 1. Correction for inner filter effects in turbid samples: fluorescence assays of mitochondrial NADH.
    French SA; Territo PR; Balaban RS
    Am J Physiol; 1998 Sep; 275(3):C900-9. PubMed ID: 9730975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH interactions.
    Blinova K; Carroll S; Bose S; Smirnov AV; Harvey JJ; Knutson JR; Balaban RS
    Biochemistry; 2005 Feb; 44(7):2585-94. PubMed ID: 15709771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of matrix Mg2+ concentration of rat heart mitochondria using fluorescent probes.
    Rutter GA; Osbaldeston NJ; McCormack JG; Denton RM
    Biochem Soc Trans; 1990 Oct; 18(5):894-5. PubMed ID: 2083716
    [No Abstract]   [Full Text] [Related]  

  • 4. Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery.
    Brandes R; Bers DM
    Biophys J; 1996 Aug; 71(2):1024-35. PubMed ID: 8842239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of pyridine nucleotide fluorescence from the perfused heart using an internal standard.
    Koretsky AP; Katz LA; Balaban RS
    Am J Physiol; 1987 Oct; 253(4 Pt 2):H856-62. PubMed ID: 3661733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy.
    Amelink A; Kruijt B; Robinson DJ; Sterenborg HJ
    J Biomed Opt; 2008; 13(5):054051. PubMed ID: 19021431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium activation of heart mitochondrial oxidative phosphorylation: rapid kinetics of mVO2, NADH, AND light scattering.
    Territo PR; French SA; Dunleavy MC; Evans FJ; Balaban RS
    J Biol Chem; 2001 Jan; 276(4):2586-99. PubMed ID: 11029457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence absorbance inner-filter decomposition: the role of emission shape on estimates of free Ca(2+) using Rhod-2.
    Territo PR; Heil J; Bose S; Evans FJ; Balaban RS
    Appl Spectrosc; 2007 Feb; 61(2):138-47. PubMed ID: 17331304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].
    Cheng Y; Ren M; Niu Y; Qiao J; Aneba S; Chorvat D; Chorvatova A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1191-200. PubMed ID: 20095467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Berberine derivatives as cationic fluorescent probes for the investigation of the energized state of mitochondria.
    Mikes V; Dadák V
    Biochim Biophys Acta; 1983 May; 723(2):231-9. PubMed ID: 6849903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals.
    Chance B; Schoener B; Oshino R; Itshak F; Nakase Y
    J Biol Chem; 1979 Jun; 254(11):4764-71. PubMed ID: 220260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of NAD(P)H oxidase in the regulation of cardiac L-type Ca2+ channel function during acute hypoxia.
    Hool LC; Di Maria CA; Viola HM; Arthur PG
    Cardiovasc Res; 2005 Sep; 67(4):624-35. PubMed ID: 15913584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADH enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP): applications to enzyme and mitochondrial reaction kinetics, in vitro.
    Joubert F; Fales HM; Wen H; Combs CA; Balaban RS
    Biophys J; 2004 Jan; 86(1 Pt 1):629-45. PubMed ID: 14695307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological and physiological stimuli do not promote Ca(2+)-sensitive K+ channel activity in isolated heart mitochondria.
    Cancherini DV; Queliconi BB; Kowaltowski AJ
    Cardiovasc Res; 2007 Mar; 73(4):720-8. PubMed ID: 17208207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo NADH fluorescence.
    Ince C; Coremans JM; Bruining HA
    Adv Exp Med Biol; 1992; 317():277-96. PubMed ID: 1288134
    [No Abstract]   [Full Text] [Related]  

  • 18. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives.
    Scaduto RC; Grotyohann LW
    Biophys J; 1999 Jan; 76(1 Pt 1):469-77. PubMed ID: 9876159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo NADH and Pd-porphyrin video fluori-/phosphorimetry.
    Ince C; Ashruf JF; Sanderse EA; Pierik EG; Coremans JM; Bruining HA
    Adv Exp Med Biol; 1992; 317():267-75. PubMed ID: 1288133
    [No Abstract]   [Full Text] [Related]  

  • 20. NADH measurements in adult rat myocytes during simulated ischemia.
    Esumi K; Nishida M; Shaw D; Smith TW; Marsh JD
    Am J Physiol; 1991 Jun; 260(6 Pt 2):H1743-52. PubMed ID: 2058713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.