BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 9731044)

  • 1. Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor.
    Kiem HP; Andrews RG; Morris J; Peterson L; Heyward S; Allen JM; Rasko JE; Potter J; Miller AD
    Blood; 1998 Sep; 92(6):1878-86. PubMed ID: 9731044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of granulocyte colony-stimulating factor during retroviral transduction on fibronectin fragment CH-296 enhances gene transfer into hematopoietic repopulating cells in dogs.
    Goerner M; Bruno B; McSweeney PA; Buron G; Storb R; Kiem HP
    Blood; 1999 Oct; 94(7):2287-92. PubMed ID: 10498600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene transfer into baboon repopulating cells: A comparison of Flt-3 Ligand and megakaryocyte growth and development factor versus IL-3 during ex vivo transduction.
    Kurre P; Morris J; Horn PA; Harkey MA; Andrews RG; Kiem HP
    Mol Ther; 2001 Jun; 3(6):920-7. PubMed ID: 11407906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient gene transfer into preterm CD34 hematopoietic progenitor cells.
    Shields LE; Kiem HP; Andrews RG
    Am J Obstet Gynecol; 2000 Sep; 183(3):732-7. PubMed ID: 10992201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene transfer into marrow repopulating cells: comparison between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons.
    Kiem HP; Heyward S; Winkler A; Potter J; Allen JM; Miller AD; Andrews RG
    Blood; 1997 Dec; 90(11):4638-45. PubMed ID: 9373277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prolonged high-level detection of retrovirally marked hematopoietic cells in nonhuman primates after transduction of CD34+ progenitors using clinically feasible methods.
    Wu T; Kim HJ; Sellers SE; Meade KE; Agricola BA; Metzger ME; Kato I; Donahue RE; Dunbar CE; Tisdale JF
    Mol Ther; 2000 Mar; 1(3):285-93. PubMed ID: 10933944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient gene transfer into baboon marrow repopulating cells using GALV-pseudotype oncoretroviral vectors produced by human packaging cells.
    Horn PA; Topp MS; Morris JC; Riddell SR; Kiem HP
    Blood; 2002 Dec; 100(12):3960-7. PubMed ID: 12393453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved gene transfer into canine hematopoietic repopulating cells using CD34-enriched marrow cells in combination with a gibbon ape leukemia virus-pseudotype retroviral vector.
    Kiem HP; McSweeney PA; Bruno B; Goerner M; Buron G; Morris J; Storb R; Miller AD
    Gene Ther; 1999 Jun; 6(6):966-72. PubMed ID: 10455398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of fibronectin-assisted retroviral gene transfer into human CD34+ hematopoietic cells.
    Hanenberg H; Hashino K; Konishi H; Hock RA; Kato I; Williams DA
    Hum Gene Ther; 1997 Dec; 8(18):2193-206. PubMed ID: 9449373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delayed targeting of cytokine-nonresponsive human bone marrow CD34(+) cells with retrovirus-mediated gene transfer enhances transduction efficiency and long-term expression of transduced genes.
    Veena P; Traycoff CM; Williams DA; McMahel J; Rice S; Cornetta K; Srour EF
    Blood; 1998 May; 91(10):3693-701. PubMed ID: 9573006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preincubation with endothelial cell monolayers increases gene transfer efficiency into human bone marrow CD34(+)CD38(-) progenitor cells.
    Chute JP; Saini A; Wells M; Clark W; Wu A; St Louis D; Blair P; Harlan D; Kaushal S
    Hum Gene Ther; 2000 Dec; 11(18):2515-28. PubMed ID: 11119422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved retroviral gene transfer into murine and Rhesus peripheral blood or bone marrow repopulating cells primed in vivo with stem cell factor and granulocyte colony-stimulating factor.
    Dunbar CE; Seidel NE; Doren S; Sellers S; Cline AP; Metzger ME; Agricola BA; Donahue RE; Bodine DM
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11871-6. PubMed ID: 8876230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ex vivo selection for oncoretrovirally transduced green fluorescent protein-expressing CD34-enriched cells increases short-term engraftment of transduced cells in baboons.
    Kiem HP; Rasko JE; Morris J; Peterson L; Kurre P; Andrews RG
    Hum Gene Ther; 2002 May; 13(8):891-9. PubMed ID: 12031122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient retrovirus-mediated gene transfer to transplantable human bone marrow cells in the absence of fibronectin.
    Hennemann B; Oh IH; Chuo JY; Kalberer CP; Schley PD; Rose-John S; Humphries RK; Eaves CJ
    Blood; 2000 Oct; 96(7):2432-9. PubMed ID: 11001895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ex vivo expansion of genetically marked rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability.
    Tisdale JF; Hanazono Y; Sellers SE; Agricola BA; Metzger ME; Donahue RE; Dunbar CE
    Blood; 1998 Aug; 92(4):1131-41. PubMed ID: 9694700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of gene transfer into primitive human hematopoietic cells of granulocyte-colony stimulating factor-mobilized peripheral blood using low-dose cytokines and comparison of a gibbon ape leukemia virus versus an RD114-pseudotyped retroviral vector.
    van der Loo JC; Liu BL; Goldman AI; Buckley SM; Chrudimsky KS
    Hum Gene Ther; 2002 Jul; 13(11):1317-30. PubMed ID: 12162814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem cell factor, interleukin-3, and interleukin-6 promote retroviral-mediated gene transfer into murine hematopoietic stem cells.
    Luskey BD; Rosenblatt M; Zsebo K; Williams DA
    Blood; 1992 Jul; 80(2):396-402. PubMed ID: 1378319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained multilineage gene persistence and expression in dogs transplanted with CD34(+) marrow cells transduced by RD114-pseudotype oncoretrovirus vectors.
    Goerner M; Horn PA; Peterson L; Kurre P; Storb R; Rasko JE; Kiem HP
    Blood; 2001 Oct; 98(7):2065-70. PubMed ID: 11567991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ex vivo expansion of megakaryocyte progenitors: effect of various growth factor combinations on CD34+ progenitor cells from bone marrow and G-CSF-mobilized peripheral blood.
    Gehling UM; Ryder JW; Hogan CJ; Hami L; McNiece I; Franklin W; Williams S; Helm K; King J; Shpall EJ
    Exp Hematol; 1997 Oct; 25(11):1125-39. PubMed ID: 9328449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Megakaryocyte progenitors derived from bone marrow or G-CSF-mobilized peripheral blood CD34 cells show a distinct phenotype and responsiveness to interleukin-3 (IL-3) and PEG-recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF).
    Catani L; Gugliotta L; Campanini E; Mangianti S; Gibellini D; Baravelli S; Vianelli N; Lemoli RM; Tura S
    Br J Haematol; 1998 Jan; 100(1):207-18. PubMed ID: 9450813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.