These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9731118)

  • 1. 20-Hz flicker stimulus can isolate the cone function in rat retina.
    Goto Y; Yasuda T; Tobimatsu S; Kato M
    Ophthalmic Res; 1998; 30(6):368-73. PubMed ID: 9731118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of rat cone-mediated electroretinograms during light adaptation.
    Goto Y; Tobimatsu S; Shigematsu J; Akazawa K; Kato M
    Curr Eye Res; 1999 Sep; 19(3):248-53. PubMed ID: 10487963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light adaptation and the luminance-response function of the cone electroretinogram.
    Peachey NS; Alexander KR; Derlacki DJ; Fishman GA
    Doc Ophthalmol; 1992; 79(4):363-9. PubMed ID: 1633746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal 8-Hz flicker electroretinograms in carriers of X-linked retinoschisis.
    McAnany JJ; Park JC; Collison FT; Fishman GA; Stone EM
    Doc Ophthalmol; 2016 Aug; 133(1):61-70. PubMed ID: 27369766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rod- versus cone-driven ERGs at different stimulus sizes in normal subjects and retinitis pigmentosa patients.
    Aher AJ; McKeefry DJ; Parry NRA; Maguire J; Murray IJ; Tsai TI; Huchzermeyer C; Kremers J
    Doc Ophthalmol; 2018 Feb; 136(1):27-43. PubMed ID: 29134295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Depth Functional Diagnostics of Mouse Models by Single-Flash and Flicker Electroretinograms without Adapting Background Illumination.
    Tanimoto N; Michalakis S; Weber BH; Wahl-Schott CA; Hammes HP; Seeliger MW
    Adv Exp Med Biol; 2016; 854():619-25. PubMed ID: 26427467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and slow changes in the human cone electroretinogram during light and dark adaptation.
    Peachey NS; Arakawa K; Alexander KR; Marchese AL
    Vision Res; 1992 Nov; 32(11):2049-53. PubMed ID: 1304082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of the mouse cone-mediated electroretinogram during light adaptation.
    Peachey NS; Goto Y; al-Ubaidi MR; Naash MI
    Neurosci Lett; 1993 Nov; 162(1-2):9-11. PubMed ID: 8121644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light adaptation, rods, and the human cone flicker ERG.
    Peachey NS; Alexander KR; Derlacki DJ; Fishman GA
    Vis Neurosci; 1992 Feb; 8(2):145-50. PubMed ID: 1558826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of Bipolar Cells of Cone ON and OFF Pathways to Electroretinograms Elicited by Ultraviolet and Middle Wavelength Stimuli.
    Kawashima R; Matsushita K; Kuniyoshi K; Nishida K
    Curr Eye Res; 2019 Apr; 44(4):413-422. PubMed ID: 30444431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-field electroretinogram in autism spectrum disorder.
    Constable PA; Gaigg SB; Bowler DM; Jägle H; Thompson DA
    Doc Ophthalmol; 2016 Apr; 132(2):83-99. PubMed ID: 26868825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rod and cone contributions to the dark-adapted 15-Hz flicker electroretinogram.
    Park JC; Cao D; Collison FT; Fishman GA; McAnany JJ
    Doc Ophthalmol; 2015 Apr; 130(2):111-9. PubMed ID: 25579805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rod- and cone-isolated flicker electroretinograms and their response summation characteristics.
    McAnany JJ; Park JC; Cao D
    Vis Neurosci; 2015 Jan; 32():E018. PubMed ID: 26241372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathway-specific light adaptation in human electroretinograms.
    Brasil A; Tsai TI; da Silva Souza G; Herculano AM; Ventura DF; de Lima Silveira LC; Kremers J
    J Vis; 2019 Mar; 19(3):12. PubMed ID: 30916727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flicker electroretinograms recorded with mydriasis-free RETeval system before and after cataract surgery.
    Miura G; Sato E; Yamamoto S
    Eye (Lond); 2017 Nov; 31(11):1589-1593. PubMed ID: 28622319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change in full-field ERGs after macular translocation surgery with 360 degrees retinotomy.
    Terasaki H; Miyake Y; Suzuki T; Niwa T; Piao CH; Suzuki S; Nakamura M; Kondo M
    Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):452-7. PubMed ID: 11818390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors that influence the increase in the electroretinogram 30-Hz flicker amplitude during light adaptation.
    Raether K; Zrenner E
    Ger J Ophthalmol; 1996 Sep; 5(5):285-8. PubMed ID: 8911951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplitude increase of the multifocal electroretinogram during light adaptation.
    Kondo M; Miyake Y; Piao CH; Tanikawa A; Horiguchi M; Terasaki H
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2633-7. PubMed ID: 10509660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroretinographic assessment of rod- and cone-mediated bipolar cell pathways using flicker stimuli in mice.
    Tanimoto N; Sothilingam V; Kondo M; Biel M; Humphries P; Seeliger MW
    Sci Rep; 2015 Jun; 5():10731. PubMed ID: 26029863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual adaptation and the cone flicker electroretinogram.
    Peachey NS; Alexander KR; Fishman GA
    Invest Ophthalmol Vis Sci; 1991 Apr; 32(5):1517-22. PubMed ID: 2016133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.