These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 9731226)
1. Ouabain suppresses ATP elevation in response to fuel secretagogues in pancreatic islets. Tsuura Y; Ishida H; Nishimura M; Fujimoto S; Kajikawa M; Seino Y Biochem Biophys Res Commun; 1998 Aug; 249(3):853-7. PubMed ID: 9731226 [TBL] [Abstract][Full Text] [Related]
2. Regulation of intracellular ATP concentration under conditions of reduced ATP consumption in pancreatic islets. Tsuura Y; Fujimoto S; Kajikawa M; Ishida H; Seino Y Biochem Biophys Res Commun; 1999 Aug; 261(2):439-44. PubMed ID: 10425203 [TBL] [Abstract][Full Text] [Related]
3. Relationships between the Na(+)/K(+) pump and ATP and ADP content in mouse pancreatic islets: effects of meglitinide and glibenclamide. Elmi A; Idahl LA; Sehlin J Br J Pharmacol; 2000 Dec; 131(8):1700-6. PubMed ID: 11139449 [TBL] [Abstract][Full Text] [Related]
4. Modulation of islet ATP content by inhibition or stimulation of the Na(+)/K(+) pump. Elmi A; Idahl L; Sehlin J Eur J Pharmacol; 2001 Aug; 426(1-2):139-43. PubMed ID: 11525782 [TBL] [Abstract][Full Text] [Related]
5. Dual effects of Na/K pump inhibition on cytoplasmic Ca2+ oscillations in pancreatic beta-cells. Grapengiesser E; Berts A; Saha S; Lund PE; Gylfe E; Hellman B Arch Biochem Biophys; 1993 Jan; 300(1):372-7. PubMed ID: 8380967 [TBL] [Abstract][Full Text] [Related]
6. Src activation generates reactive oxygen species and impairs metabolism-secretion coupling in diabetic Goto-Kakizaki and ouabain-treated rat pancreatic islets. Kominato R; Fujimoto S; Mukai E; Nakamura Y; Nabe K; Shimodahira M; Nishi Y; Funakoshi S; Seino Y; Inagaki N Diabetologia; 2008 Jul; 51(7):1226-35. PubMed ID: 18449527 [TBL] [Abstract][Full Text] [Related]
7. Ouabain suppresses glucose-induced mitochondrial ATP production and insulin release by generating reactive oxygen species in pancreatic islets. Kajikawa M; Fujimoto S; Tsuura Y; Mukai E; Takeda T; Hamamoto Y; Takehiro M; Fujita J; Yamada Y; Seino Y Diabetes; 2002 Aug; 51(8):2522-9. PubMed ID: 12145166 [TBL] [Abstract][Full Text] [Related]
8. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage. McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892 [TBL] [Abstract][Full Text] [Related]
9. Effect of different stimulators and a blocker of insulin release on islet Na+, K+-ATPase activity. Gronda CM; Rossi JP; Gagliardino JJ Methods Find Exp Clin Pharmacol; 1989 May; 11(5):341-4. PubMed ID: 2547128 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of glucose-induced biphasic insulin release: physiological role of adenosine triphosphate-sensitive K+ channel-independent glucose action. Taguchi N; Aizawa T; Sato Y; Ishihara F; Hashizume K Endocrinology; 1995 Sep; 136(9):3942-8. PubMed ID: 7649103 [TBL] [Abstract][Full Text] [Related]
11. Adenine nucleotide pattern in rat pancreatic islets exposed to nutrient secretagogues. Agascioglu E; Giroix MH; Malaisse WJ; Sener A Endocrine; 2006 Apr; 29(2):325-9. PubMed ID: 16785608 [TBL] [Abstract][Full Text] [Related]
12. Unmasking of a periodic Na+ entry into glucose-stimulated pancreatic beta-cells after partial inhibition of the Na/K pump. Grapengiesser E Endocrinology; 1998 Jul; 139(7):3227-31. PubMed ID: 9645697 [TBL] [Abstract][Full Text] [Related]
13. Effect of ouabain on the breakdown of adenine nucleotides in glucose-depleted nucleated red blood cells. Characterization of ATPase. Kaloyianni M; Tsikriktsi O; Tsianopoulou P Gen Physiol Biophys; 1998 Jun; 17(2):143-56. PubMed ID: 9785102 [TBL] [Abstract][Full Text] [Related]
14. Some processes of energy saving and expenditure occurring during ethanol perfusion in the isolated liver of fed rats; a Nuclear Magnetic Resonance study. Beauvieux MC; Couzigou P; Gin H; Canioni P; Gallis JL BMC Physiol; 2004 Mar; 4():3. PubMed ID: 15053831 [TBL] [Abstract][Full Text] [Related]
15. Modulation of beta-cell ouabain-sensitive 86Rb+ influx (Na+/K+ pump) by D-glucose, glibenclamide or diazoxide. Elmi A; Idahl LA; Sehlin J Int J Exp Diabetes Res; 2001; 1(4):265-74. PubMed ID: 11467417 [TBL] [Abstract][Full Text] [Related]
16. Kinetic analysis of enzymatic hydrolysis of ATP in human and rat blood serum. Yegutkin GG Biochemistry (Mosc); 1997 Jun; 62(6):619-22. PubMed ID: 9284543 [TBL] [Abstract][Full Text] [Related]
17. Evolution of metabolic and functional derangements of pancreatic islets in phosphate depletion. Levi E; Fadda GZ; Ozbasli C; Massry SG Endocrinology; 1992 Nov; 131(5):2182-8. PubMed ID: 1330495 [TBL] [Abstract][Full Text] [Related]
18. Environmental modulation of the inhibitory action of D-mannoheptulose upon D-glucose metabolism in isolated rat pancreatic islets. Picton S; Malaisse WJ Cell Biochem Funct; 1999 Mar; 17(1):65-71. PubMed ID: 10191510 [TBL] [Abstract][Full Text] [Related]
19. A possible role of the ATP-sensitive potassium ion channel in determining the duration of spike-bursts in mouse pancreatic beta-cells. Ding WG; He LP; Omatsu-Kanbe M; Kitasato H Biochim Biophys Acta; 1996 Mar; 1279(2):219-26. PubMed ID: 8603090 [TBL] [Abstract][Full Text] [Related]
20. Sublytic complement attack increases intracellular sodium in rat skeletal muscle. Okamoto K; Wang W; Rounds J; Chambers E; Jacobs DO J Surg Res; 2000 May; 90(2):174-82. PubMed ID: 10792960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]