BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 9731226)

  • 1. Ouabain suppresses ATP elevation in response to fuel secretagogues in pancreatic islets.
    Tsuura Y; Ishida H; Nishimura M; Fujimoto S; Kajikawa M; Seino Y
    Biochem Biophys Res Commun; 1998 Aug; 249(3):853-7. PubMed ID: 9731226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of intracellular ATP concentration under conditions of reduced ATP consumption in pancreatic islets.
    Tsuura Y; Fujimoto S; Kajikawa M; Ishida H; Seino Y
    Biochem Biophys Res Commun; 1999 Aug; 261(2):439-44. PubMed ID: 10425203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between the Na(+)/K(+) pump and ATP and ADP content in mouse pancreatic islets: effects of meglitinide and glibenclamide.
    Elmi A; Idahl LA; Sehlin J
    Br J Pharmacol; 2000 Dec; 131(8):1700-6. PubMed ID: 11139449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of islet ATP content by inhibition or stimulation of the Na(+)/K(+) pump.
    Elmi A; Idahl L; Sehlin J
    Eur J Pharmacol; 2001 Aug; 426(1-2):139-43. PubMed ID: 11525782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual effects of Na/K pump inhibition on cytoplasmic Ca2+ oscillations in pancreatic beta-cells.
    Grapengiesser E; Berts A; Saha S; Lund PE; Gylfe E; Hellman B
    Arch Biochem Biophys; 1993 Jan; 300(1):372-7. PubMed ID: 8380967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Src activation generates reactive oxygen species and impairs metabolism-secretion coupling in diabetic Goto-Kakizaki and ouabain-treated rat pancreatic islets.
    Kominato R; Fujimoto S; Mukai E; Nakamura Y; Nabe K; Shimodahira M; Nishi Y; Funakoshi S; Seino Y; Inagaki N
    Diabetologia; 2008 Jul; 51(7):1226-35. PubMed ID: 18449527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ouabain suppresses glucose-induced mitochondrial ATP production and insulin release by generating reactive oxygen species in pancreatic islets.
    Kajikawa M; Fujimoto S; Tsuura Y; Mukai E; Takeda T; Hamamoto Y; Takehiro M; Fujita J; Yamada Y; Seino Y
    Diabetes; 2002 Aug; 51(8):2522-9. PubMed ID: 12145166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of different stimulators and a blocker of insulin release on islet Na+, K+-ATPase activity.
    Gronda CM; Rossi JP; Gagliardino JJ
    Methods Find Exp Clin Pharmacol; 1989 May; 11(5):341-4. PubMed ID: 2547128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of glucose-induced biphasic insulin release: physiological role of adenosine triphosphate-sensitive K+ channel-independent glucose action.
    Taguchi N; Aizawa T; Sato Y; Ishihara F; Hashizume K
    Endocrinology; 1995 Sep; 136(9):3942-8. PubMed ID: 7649103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenine nucleotide pattern in rat pancreatic islets exposed to nutrient secretagogues.
    Agascioglu E; Giroix MH; Malaisse WJ; Sener A
    Endocrine; 2006 Apr; 29(2):325-9. PubMed ID: 16785608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unmasking of a periodic Na+ entry into glucose-stimulated pancreatic beta-cells after partial inhibition of the Na/K pump.
    Grapengiesser E
    Endocrinology; 1998 Jul; 139(7):3227-31. PubMed ID: 9645697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ouabain on the breakdown of adenine nucleotides in glucose-depleted nucleated red blood cells. Characterization of ATPase.
    Kaloyianni M; Tsikriktsi O; Tsianopoulou P
    Gen Physiol Biophys; 1998 Jun; 17(2):143-56. PubMed ID: 9785102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some processes of energy saving and expenditure occurring during ethanol perfusion in the isolated liver of fed rats; a Nuclear Magnetic Resonance study.
    Beauvieux MC; Couzigou P; Gin H; Canioni P; Gallis JL
    BMC Physiol; 2004 Mar; 4():3. PubMed ID: 15053831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of beta-cell ouabain-sensitive 86Rb+ influx (Na+/K+ pump) by D-glucose, glibenclamide or diazoxide.
    Elmi A; Idahl LA; Sehlin J
    Int J Exp Diabetes Res; 2001; 1(4):265-74. PubMed ID: 11467417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of enzymatic hydrolysis of ATP in human and rat blood serum.
    Yegutkin GG
    Biochemistry (Mosc); 1997 Jun; 62(6):619-22. PubMed ID: 9284543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of metabolic and functional derangements of pancreatic islets in phosphate depletion.
    Levi E; Fadda GZ; Ozbasli C; Massry SG
    Endocrinology; 1992 Nov; 131(5):2182-8. PubMed ID: 1330495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental modulation of the inhibitory action of D-mannoheptulose upon D-glucose metabolism in isolated rat pancreatic islets.
    Picton S; Malaisse WJ
    Cell Biochem Funct; 1999 Mar; 17(1):65-71. PubMed ID: 10191510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A possible role of the ATP-sensitive potassium ion channel in determining the duration of spike-bursts in mouse pancreatic beta-cells.
    Ding WG; He LP; Omatsu-Kanbe M; Kitasato H
    Biochim Biophys Acta; 1996 Mar; 1279(2):219-26. PubMed ID: 8603090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sublytic complement attack increases intracellular sodium in rat skeletal muscle.
    Okamoto K; Wang W; Rounds J; Chambers E; Jacobs DO
    J Surg Res; 2000 May; 90(2):174-82. PubMed ID: 10792960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.