BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9731274)

  • 41. Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile.
    Zeikus JG; Wolfe RS
    J Bacteriol; 1972 Feb; 109(2):707-15. PubMed ID: 4550816
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation and characterization of a fast-growing, thermophilic methanobacterium species.
    Zhao Y; Zhang H; Boone DR; Mah RA
    Appl Environ Microbiol; 1986 Nov; 52(5):1227-9. PubMed ID: 16347224
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Procaryotic Diversity and Hydrogenotrophic Methanogenesis in an Alkaline Spring (La Crouen, New Caledonia).
    Quéméneur M; Mei N; Monnin C; Postec A; Wils L; Bartoli M; Guasco S; Pelletier B; Erauso G
    Microorganisms; 2021 Jun; 9(7):. PubMed ID: 34201651
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Methanobacterium arbophilicum sp.nov. An obligate anaerobe isolated from wetwood of living trees.
    Zeikus JG; Henning DL
    Antonie Van Leeuwenhoek; 1975; 41(4):543-52. PubMed ID: 1083210
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Geomicrobiological properties of ultra-deep granitic groundwater from the Mizunami Underground Research Laboratory (MIU), central Japan.
    Fukuda A; Hagiwara H; Ishimura T; Kouduka M; Ioka S; Amano Y; Tsunogai U; Suzuki Y; Mizuno T
    Microb Ecol; 2010 Jul; 60(1):214-25. PubMed ID: 20473491
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of assimilatory organic nitrogen, sulfur, and carbon sources for growth of methanobacterium species.
    Bhatnagar L; Jain MK; Aubert JP; Zeikus JG
    Appl Environ Microbiol; 1984 Oct; 48(4):785-90. PubMed ID: 16346644
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Methanogenic bacteria from the bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation.
    Belyaev SS; Wolkin R; Kenealy WR; Deniro MJ; Epstein S; Zeikus JG
    Appl Environ Microbiol; 1983 Feb; 45(2):691-7. PubMed ID: 16346216
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Draft Genome Sequence of a New
    Ouboter HT; Berger S; Güngör E; Jetten MSM; Welte CU
    Microbiol Resour Announc; 2020 Aug; 9(32):. PubMed ID: 32763928
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Isolation and characterization of a novel thermophilic, freshwater methanogen.
    Harris JE; Pinn PA; Davis RP
    Appl Environ Microbiol; 1984 Dec; 48(6):1123-8. PubMed ID: 16346676
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Draft Genome Sequence of
    Ragab A; Shaw DR; Katuri KP; Saikaly PE
    Microbiol Resour Announc; 2019 Nov; 8(45):. PubMed ID: 31699767
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Methanogenesis from ethanol by defined mixed continuous cultures.
    Tatton MJ; Archer DB; Powell GE; Parker ML
    Appl Environ Microbiol; 1989 Feb; 55(2):440-5. PubMed ID: 16347852
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Draft Genome Sequence of Methanobacterium sp. Maddingley, Reconstructed from Metagenomic Sequencing of a Methanogenic Microbial Consortium Enriched from Coal-Seam Gas Formation Water.
    Rosewarne CP; Greenfield P; Li D; Tran-Dinh N; Midgley DJ; Hendry P
    Genome Announc; 2013 Jan; 1(1):. PubMed ID: 23405289
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of Monensin on Growth and Methanogenesis of Methanobacterium formicicum.
    Dellinger CA; Ferry JG
    Appl Environ Microbiol; 1984 Sep; 48(3):680-2. PubMed ID: 16346634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation and characterization of Methanobacterium ruminantium n. sp.
    SMITH PH; HUNGATE RE
    J Bacteriol; 1958 Jun; 75(6):713-8. PubMed ID: 13549377
    [No Abstract]   [Full Text] [Related]  

  • 55. Assessment of the in situ biomethanation potential of a deep aquifer used for natural gas storage.
    Ranchou-Peyruse M; Guignard M; Chiquet P; Caumette G; Cézac P; Ranchou-Peyruse A
    FEMS Microbiol Ecol; 2024 May; 100(6):. PubMed ID: 38658197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbiological insight into various underground gas storages in Vienna Basin focusing on methanogenic
    Hanišáková N; Vítězová M; Vítěz T; Kushkevych I; Kotrlová E; Novák D; Lochman J; Zavada R
    Front Microbiol; 2023; 14():1293506. PubMed ID: 38188570
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of a novel lipoic acid biosynthesis pathway reveals the complex evolution of lipoate assembly in prokaryotes.
    Tanabe TS; Grosser M; Hahn L; Kümpel C; Hartenfels H; Vtulkin E; Flegler W; Dahl C
    PLoS Biol; 2023 Jun; 21(6):e3002177. PubMed ID: 37368881
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thiobacillus as a key player for biofilm formation in oligotrophic groundwaters of the Fennoscandian Shield.
    Lopez-Fernandez M; Westmeijer G; Turner S; Broman E; Ståhle M; Bertilsson S; Dopson M
    NPJ Biofilms Microbiomes; 2023 Jun; 9(1):41. PubMed ID: 37349512
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel interdomain consortium from a Costa Rican oil well composed of Methanobacterium cahuitense sp. nov. and Desulfomicrobium aggregans sp. nov.
    Dengler L; Meier J; Klingl A; Nißl L; Bellack A; Grohmann D; Rachel R; Huber H
    Arch Microbiol; 2023 Apr; 205(5):189. PubMed ID: 37055657
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advances in Defining Ecosystem Functions of the Terrestrial Subsurface Biosphere.
    Meyer-Dombard DR; Malas J
    Front Microbiol; 2022; 13():891528. PubMed ID: 35722320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.