These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9731338)

  • 1. Peak detection in auditory and somatosensory evoked potentials by means of the zero-crossings wavelet representation.
    van der Kouwe AJ; Burgess RC
    Biomed Sci Instrum; 1997; 33():71-6. PubMed ID: 9731338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Extracting and analyzing rabbit somatosensory evoked potential on the basis of continuous wavelet transform and multi-resolution analysis].
    Li Z; Zhao Z; Liu S; Xie Z; Lu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):504-8. PubMed ID: 17713249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelet domain nonlinear filtering for evoked potential signal enhancement.
    Sita G; Ramakrishnan AG
    Comput Biomed Res; 2000 Dec; 33(6):431-46. PubMed ID: 11150236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of latency changes and relative amplitudes in somatosensory evoked potentials using wavelets and regression.
    Angel A; Linkens DC; Ting CH
    Comput Biomed Res; 1999 Jun; 32(3):209-51. PubMed ID: 10356303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.
    Du P; Kibbe WA; Lin SM
    Bioinformatics; 2006 Sep; 22(17):2059-65. PubMed ID: 16820428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Application of differential wavelet in detecting QRS complexes of ECG signal].
    Yu H; Zhang K; Lu YS; Huang YX
    Zhongguo Yi Liao Qi Xie Za Zhi; 2001 Nov; 25(6):334-7, 327. PubMed ID: 12583265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A program system interpreting recording of long-latency evoked potentials].
    Ampilova NB; Bereznaia IIa; Grachev KV; Gurevich EIa; Strakhovich EV
    Med Tekh; 1996; (6):20-3. PubMed ID: 9053704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Visual, auditory and somatosensory evoked potentials in normal pregnancies and pregnancies complicated by pre-eclampsia].
    Grechuta M
    Wiad Lek; 2004; 57(11-12):593-8. PubMed ID: 15865233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data.
    Zumer JM; Attias HT; Sekihara K; Nagarajan SS
    Neuroimage; 2007 Aug; 37(1):102-15. PubMed ID: 17574444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of late-latency auditory and somatosensory evoked potentials to threat of electric shock and the sedative drugs diazepam and diphenhydramine in human volunteers.
    Scaife JC; Groves J; Langley RW; Bradshaw CM; Szabadi E
    J Psychopharmacol; 2006 Jul; 20(4):485-95. PubMed ID: 16204321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brainstem auditory evoked potentials and somatosensory evoked potentials in cerebral malaria--a prognostic significance.
    Kochar DK; Kumawat BL; Halwai M; Kochar SK; Shubhakaran ; Thanvi I
    J Assoc Physicians India; 2000 Mar; 48(3):295-300. PubMed ID: 11229113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The wavelet transform as a tool for recognition of biosignals.
    Gyaw TA; Ray SR
    Biomed Sci Instrum; 1994; 30():63-8. PubMed ID: 7948651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research for De-noising in the detection of chromatic visual evoked potential based on wavelet].
    Xiong K; Hou M; Ye G; Yang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):496-8. PubMed ID: 16856376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction between somatosensory and auditory cognitive processing assessed with event-related potentials.
    Touge T; Gonzalez D; Wu J; Deguchi K; Tsukaguchi M; Shimamura M; Ikeda K; Kuriyama S
    J Clin Neurophysiol; 2008 Apr; 25(2):90-7. PubMed ID: 18340272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting movement-related EEG change by wavelet decomposition-based neural networks trained with single thumb movement.
    Chen CW; Lin CC; Ju MS
    Clin Neurophysiol; 2007 Apr; 118(4):802-14. PubMed ID: 17317306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency somatosensory evoked potentials of normal subjects.
    Lin CY; Yeh YC; Lai KL; Chen JT; Wang SJ; Lin YY; Liao KK
    Acta Neurol Taiwan; 2009 Sep; 18(3):180-6. PubMed ID: 19960961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric modeling of somatosensory evoked potentials using discrete cosine transform.
    Bai O; Nakamura M; Nagamine T; Shibasaki H
    IEEE Trans Biomed Eng; 2001 Nov; 48(11):1347-51. PubMed ID: 11686634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of wavelets on multiscale analysis and parametrization of midlatency auditory evoked potentials.
    Scheller B; Zwissler B; Daunderer M; Schneider G; Schwender D; Rentschler I
    Biol Cybern; 2006 Sep; 95(3):193-203. PubMed ID: 16724241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast wavelet estimation of weak biosignals.
    Causevic E; Morley RE; Wickerhauser MV; Jacquin AE
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1021-32. PubMed ID: 15977732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EP parametrization and classification using wavelet networks--theoretical concept and medical application.
    Dickhaus H; Heinrich H
    Stud Health Technol Inform; 1997; 43 Pt B():541-5. PubMed ID: 10179724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.