These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9731504)

  • 61. [Clearing up the p16INK4a-p14/p19ARF imbroglio?].
    Larsen CJ
    Bull Cancer; 2001 Nov; 88(11):1055-8. PubMed ID: 11741798
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Different Expression of p16INK4a and p14ARF in cervical and lung cancers.
    Li JG; Li L; Zhang SW
    Eur Rev Med Pharmacol Sci; 2013 Nov; 17(22):3007-11. PubMed ID: 24302179
    [TBL] [Abstract][Full Text] [Related]  

  • 63. p19ARF is a critical mediator of both cellular senescence and an innate immune response associated with MYC inactivation in mouse model of acute leukemia.
    Yetil A; Anchang B; Gouw AM; Adam SJ; Zabuawala T; Parameswaran R; van Riggelen J; Plevritis S; Felsher DW
    Oncotarget; 2015 Feb; 6(6):3563-77. PubMed ID: 25784651
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins.
    Kim JH; Yoon SY; Kim CN; Joo JH; Moon SK; Choe IS; Choe YK; Kim JW
    Cancer Lett; 2004 Jan; 203(2):217-24. PubMed ID: 14732230
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparison of the inhibitory effects of three transcriptional variants of CDKN2A in human lung cancer cell line A549.
    Zhang W; Zhu J; Bai J; Jiang H; Liu F; Liu A; Liu P; Ji G; Guan R; Sun D; Ji W; Yu Y; Jin Y; Meng X; Fu S
    J Exp Clin Cancer Res; 2010 Jun; 29(1):74. PubMed ID: 20565749
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Alterations of P19ARF in rodent hepatoma cell lines but not in human primary liver cancer.
    Laes J; Parada LA; Johansson B; Levan G; Szpirer C; Szpirer J
    Cancer Genet Cytogenet; 2000 Mar; 117(2):118-24. PubMed ID: 10704681
    [TBL] [Abstract][Full Text] [Related]  

  • 67. p53 immunostaining in combined type small cell lung cancer. Brief report.
    Higashiyama M; Doi O; Yokouchi H; Kodama K; Tateishi R
    APMIS; 1995 Jun; 103(6):477-80. PubMed ID: 7546652
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Genetic alterations responsible for metastatic phenotypes of lung cancer cells.
    Yokota J; Nishioka M; Tani M; Kohno T
    Clin Exp Metastasis; 2003; 20(3):189-93. PubMed ID: 12741677
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An association between nuclear morphology and immunohistochemical expression of p53 and p16INK4A in lung cancer cells.
    Okudela K
    Med Mol Morphol; 2014 Sep; 47(3):130-6. PubMed ID: 24037424
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Splicing into senescence: the curious case of p16 and p19ARF.
    Haber DA
    Cell; 1997 Nov; 91(5):555-8. PubMed ID: 9393847
    [No Abstract]   [Full Text] [Related]  

  • 71. Analysis of antibodies to p16INK4A tumor suppressor gene products in lung cancer patients.
    Namikawa O; Shimizu E; Sumitomo K; Sone S
    Int J Oncol; 1999 Apr; 14(4):681-5. PubMed ID: 10087314
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Perspectives for cancer immunotherapy mediated by p19Arf plus interferon-beta gene transfer.
    Strauss BE; Silva GRO; de Luna Vieira I; Cerqueira OLD; Del Valle PR; Medrano RFV; Mendonça SA
    Clinics (Sao Paulo); 2018 Sep; 73(suppl 1):e479s. PubMed ID: 30208166
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The specificity and patterns of staining in human cells and tissues of p16INK4a antibodies demonstrate variant antigen binding.
    Sawicka M; Pawlikowski J; Wilson S; Ferdinando D; Wu H; Adams PD; Gunn DA; Parish W
    PLoS One; 2013; 8(1):e53313. PubMed ID: 23308192
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Splicing Variants, Protein-Protein Interactions, and Drug Targeting in Hutchinson-Gilford Progeria Syndrome and Small Cell Lung Cancer.
    Kim BH; Woo TG; Kang SM; Park S; Park BJ
    Genes (Basel); 2022 Jan; 13(2):. PubMed ID: 35205210
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Roles of ARF tumour suppressor protein in lung cancer: time to hit the nail on the head!
    Vashi R; Patel BM
    Mol Cell Biochem; 2021 Mar; 476(3):1365-1375. PubMed ID: 33392921
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Post-Translational Regulation of ARF: Perspective in Cancer.
    Seo J; Seong D; Lee SR; Oh DB; Song J
    Biomolecules; 2020 Aug; 10(8):. PubMed ID: 32759846
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Regulatory Network of ARF in Cancer Development.
    Ko A; Han SY; Song J
    Mol Cells; 2018 May; 41(5):381-389. PubMed ID: 29665672
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dynamics of ARF regulation that control senescence and cancer.
    Ko A; Han SY; Song J
    BMB Rep; 2016 Nov; 49(11):598-606. PubMed ID: 27470213
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular biology of lung cancer: clinical implications.
    Larsen JE; Minna JD
    Clin Chest Med; 2011 Dec; 32(4):703-40. PubMed ID: 22054881
    [TBL] [Abstract][Full Text] [Related]  

  • 80. ARF-induced downregulation of Mip130/LIN-9 protein levels mediates a positive feedback that leads to increased expression of p16Ink4a and p19Arf.
    Song J; Sandoval R; Pilkinton MA; Tian X; Raychaudhuri P; Colamonici OR
    Oncogene; 2010 Apr; 29(13):1976-86. PubMed ID: 20101237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.