These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9731582)

  • 61. Mammalian cell microinjection assay to study the function of Rac and Rho.
    Ridley AJ
    Methods Mol Biol; 1998; 84():153-60. PubMed ID: 9666447
    [No Abstract]   [Full Text] [Related]  

  • 62. Regulation of Cytoskeleton and Cell Adhesions by the Small GTPase Rho and Its Targets.
    Amano M; Fukata Y; Kaibuchi K
    Trends Cardiovasc Med; 1998 May; 8(4):162-8. PubMed ID: 21235928
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Coxiella burnetii induces reorganization of the actin cytoskeleton in human monocytes.
    Meconi S; Jacomo V; Boquet P; Raoult D; Mege JL; Capo C
    Infect Immun; 1998 Nov; 66(11):5527-33. PubMed ID: 9784567
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Leptin induces phagocytosis of apoptotic bodies by hepatic stellate cells via a Rho guanosine triphosphatase-dependent mechanism.
    Jiang JX; Mikami K; Shah VH; Torok NJ
    Hepatology; 2008 Nov; 48(5):1497-505. PubMed ID: 18925608
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microinjection of recombinant p21rho induces rapid changes in cell morphology.
    Paterson HF; Self AJ; Garrett MD; Just I; Aktories K; Hall A
    J Cell Biol; 1990 Sep; 111(3):1001-7. PubMed ID: 2118140
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Small GTP-binding proteins of the Rho- and Ras-subfamilies are not involved in the actin rearrangements induced by attaching and effacing Escherichia coli.
    Ebel F; von Eichel-Streiber C; Rohde M; Chakraborty T
    FEMS Microbiol Lett; 1998 Jun; 163(2):107-12. PubMed ID: 9673012
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A dominant inhibitory version of the small GTP-binding protein Rac disrupts cytoskeletal structures and inhibits developmental cell shape changes in Drosophila.
    Harden N; Loh HY; Chia W; Lim L
    Development; 1995 Mar; 121(3):903-14. PubMed ID: 7720592
    [TBL] [Abstract][Full Text] [Related]  

  • 68. ARHGEF4-mediates the actin cytoskeleton reorganization of hepatic stellate cells in 3-dimensional collagen matrices.
    Zhang X; Sun L; Chen W; Wu S; Li Y; Li X; Zhang B; Yao J; Wang H; Xu A
    Cell Adh Migr; 2019 Dec; 13(1):169-181. PubMed ID: 30871422
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The type III cytotoxins of Yersinia and Pseudomonas aeruginosa that modulate the actin cytoskeleton.
    Baldwin MR; Barbieri JT
    Curr Top Microbiol Immunol; 2005; 291():147-66. PubMed ID: 15984080
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The actin-based motility of intracellular Listeria monocytogenes is not controlled by small GTP-binding proteins of the Rho- and Ras-subfamilies.
    Ebel F; Rohde M; von Eichel-Streiber C; Wehland J; Chakraborty T
    FEMS Microbiol Lett; 1999 Jul; 176(1):117-24. PubMed ID: 10418138
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Blebbistatin inhibits contraction and accelerates migration in mouse hepatic stellate cells.
    Liu Z; van Grunsven LA; Van Rossen E; Schroyen B; Timmermans JP; Geerts A; Reynaert H
    Br J Pharmacol; 2010 Jan; 159(2):304-15. PubMed ID: 20039876
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phalloidin Staining for F-Actin in Hepatic Stellate Cells.
    Schröder SK; Tag CG; Weiskirchen S; Weiskirchen R
    Methods Mol Biol; 2023; 2669():55-66. PubMed ID: 37247054
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Induction of the lipocyte phenotype in murine hepatic stellate cells: reorganisation of the actin cytoskeleton.
    Mermelstein CS; Guma FC; Mello TG; Fortuna VA; Guaragna RM; Costa ML; Borojevic R
    Cell Tissue Res; 2001 Oct; 306(1):75-83. PubMed ID: 11683184
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Small GTP-binding proteins and the regulation of the actin cytoskeleton.
    Hall A
    Annu Rev Cell Biol; 1994; 10():31-54. PubMed ID: 7888179
    [No Abstract]   [Full Text] [Related]  

  • 75. New insights into the dynamics of sinusoidal endothelial fenestrae in liver sinusoidal endothelial cells.
    Yokomori H
    Med Mol Morphol; 2008 Mar; 41(1):1-4. PubMed ID: 18470674
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Live imaging of glioblastoma cells in brain tissue shows requirement of actin bundles for migration.
    Caspani EM; Echevarria D; Rottner K; Small JV
    Neuron Glia Biol; 2006 May; 2(2):105-14. PubMed ID: 18634584
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Poisons, ruffles and rockets: bacterial pathogens and the host cell cytoskeleton.
    Steele-Mortimer O; Knodler LA; Finlay BB
    Traffic; 2000 Feb; 1(2):107-18. PubMed ID: 11208091
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dual role of Ras and Rho proteins: at the cutting edge of life and death.
    Gómez J; Martínez-A C; González A; Rebollo A
    Immunol Cell Biol; 1998 Apr; 76(2):125-34. PubMed ID: 9619482
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Rho as a regulator of the cytoskeleton.
    Takai Y; Sasaki T; Tanaka K; Nakanishi H
    Trends Biochem Sci; 1995 Jun; 20(6):227-31. PubMed ID: 7543224
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Harnessing the perinuclear actin cap (pnAC) to influence nanocarrier trafficking and gene transfection efficiency in skeletal myoblasts using nanopillars.
    Chang R; Yan Q; Kingshott P; Tsai WB; Wang PY
    Acta Biomater; 2020 Jul; 111():221-231. PubMed ID: 32442782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.