BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9732130)

  • 1. Basal cochlear lesions result in increased amplitude of otoacoustic emissions.
    Kakigi A; Hirakawa H; Harel N; Mount RJ; Harrison RV
    Audiol Neurootol; 1998; 3(6):361-72. PubMed ID: 9732130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of distortion-product and transient evoked otoacoustic emissions with ABR threshold shift in chinchillas with ototoxic damage.
    Kakigi A; Hirakawa H; Harel N; Mount RJ; Harrison RV
    Auris Nasus Larynx; 1998 Sep; 25(3):223-32. PubMed ID: 9799987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of various durations of noise exposure on auditory brainstem response, distortion product otoacoustic emissions and transient evoked otoacoustic emissions in rats.
    Fraenkel R; Freeman S; Sohmer H
    Audiol Neurootol; 2001; 6(1):40-9. PubMed ID: 11173774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between auditory threshold and evoked otoacoustic emissions.
    Wagner W; Plinkert PK
    Eur Arch Otorhinolaryngol; 1999; 256(4):177-88. PubMed ID: 10337508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On a possible prognostic value of otoacoustic emissions: a study on patients with sudden hearing loss.
    Hoth S
    Eur Arch Otorhinolaryngol; 2005 Mar; 262(3):217-24. PubMed ID: 15133692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of anesthesia on otoacoustic emissions.
    Harel N; Kakigi A; Hirakawa H; Mount RJ; Harrison RV
    Hear Res; 1997 Aug; 110(1-2):25-33. PubMed ID: 9282886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of crossed olivocochlear bundle section on transient evoked otoacoustic emissions.
    Kakigi A; Hirakawa H; Mount RJ; Harrison RV
    Hear Res; 1997 Aug; 110(1-2):34-8. PubMed ID: 9282887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased otoacoustic-emission amplitude secondary to cochlear lesions.
    Raveh E; Mount RJ; Harrison RV
    J Otolaryngol; 1998 Dec; 27(6):354-60. PubMed ID: 9857322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subclinical dysfunction of cochlea and cochlear efferents in migraine: an otoacoustic emission study.
    Bolay H; Bayazit YA; Gündüz B; Ugur AK; Akçali D; Altunyay S; Ilica S; Babacan A
    Cephalalgia; 2008 Apr; 28(4):309-17. PubMed ID: 18279433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Intra- and intersubject variability of acoustically evoked otoacoustic emissions. II. Distortion product otoacoustic emissions].
    Shehata-Dieler WE; Dieler R; Teichert K; Moser LM
    Laryngorhinootologie; 1999 Jun; 78(6):345-50. PubMed ID: 10439355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions.
    Ortmann AJ; Abdala C
    Ear Hear; 2016; 37(5):603-14. PubMed ID: 27232070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of cochlear function in normal-hearing young adults exposed to MP3 player noise by analyzing transient evoked otoacoustic emissions and distortion products.
    Santaolalla Montoya F; Ibargüen AM; Vences AR; del Rey AS; Fernandez JM
    J Otolaryngol Head Neck Surg; 2008 Oct; 37(5):718-24. PubMed ID: 19128682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evoked otoacoustic emissions: an alternative test of auditory function in horses.
    Mc Brearty A; Auckburally A; Pollock PJ; Penderis J
    Equine Vet J; 2013 Jan; 45(1):60-5. PubMed ID: 22296459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of cochlear active mechanisms in tinnitus subjects with normal hearing sensitivity: multiparametric recording of evoked otoacoustic emissions and contralateral suppression.
    Paglialonga A; Del Bo L; Ravazzani P; Tognola G
    Auris Nasus Larynx; 2010 Jun; 37(3):291-8. PubMed ID: 19879078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the auditory-evoked brainstem response wave I to distortion-product otoacoustic emissions resulting from changes to inner ear blood flow.
    Telischi FF; Mom T; Agrama M; Stagner BB; Ozdamar O; Bustillo A; Martin GK
    Laryngoscope; 1999 Feb; 109(2 Pt 1):186-91. PubMed ID: 10890763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
    Harding GW; Bohne BA; Lee SC; Salt AN
    Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term stability between click-evoked otoacoustic emissions and distortion product otoacoustic emissions in guinea pigs: A comparison.
    Hoshino M; Ueda H; Nakata S
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(4):175-80. PubMed ID: 10450050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Intra- and intersubject variability of acoustically evoked otoacoustic emissions. I. Transiently evoked otoacoustic emissions].
    Dieler R; Shehata-Dieler WE; Klagges T; Moser LM
    Laryngorhinootologie; 1999 Jun; 78(6):339-44. PubMed ID: 10439354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The latency of evoked otoacoustic emissions: its relation to hearing loss and auditory evoked potentials.
    Hoth S; Weber FN
    Scand Audiol; 2001; 30(3):173-83. PubMed ID: 11683455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.