These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 9732264)

  • 1. JNK targets p53 ubiquitination and degradation in nonstressed cells.
    Fuchs SY; Adler V; Buschmann T; Yin Z; Wu X; Jones SN; Ronai Z
    Genes Dev; 1998 Sep; 12(17):2658-63. PubMed ID: 9732264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of JNK, Mdm2 and p14(ARF) contribution to the regulation of mutant p53 stability.
    Buschmann T; Minamoto T; Wagle N; Fuchs SY; Adler V; Mai M; Ronai Z
    J Mol Biol; 2000 Jan; 295(4):1009-21. PubMed ID: 10656807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MEKK1/JNK signaling stabilizes and activates p53.
    Fuchs SY; Adler V; Pincus MR; Ronai Z
    Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10541-6. PubMed ID: 9724739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo.
    Midgley CA; Desterro JM; Saville MK; Howard S; Sparks A; Hay RT; Lane DP
    Oncogene; 2000 May; 19(19):2312-23. PubMed ID: 10822382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple sites of in vivo phosphorylation in the MDM2 oncoprotein cluster within two important functional domains.
    Hay TJ; Meek DW
    FEBS Lett; 2000 Jul; 478(1-2):183-6. PubMed ID: 10922493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mdm2 association with p53 targets its ubiquitination.
    Fuchs SY; Adler V; Buschmann T; Wu X; Ronai Z
    Oncogene; 1998 Nov; 17(19):2543-7. PubMed ID: 9824166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. c-Jun NH2-terminal kinases target the ubiquitination of their associated transcription factors.
    Fuchs SY; Xie B; Adler V; Fried VA; Davis RJ; Ronai Z
    J Biol Chem; 1997 Dec; 272(51):32163-8. PubMed ID: 9405416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members.
    Craig AL; Chrystal JA; Fraser JA; Sphyris N; Lin Y; Harrison BJ; Scott MT; Dornreiter I; Hupp TR
    Mol Cell Biol; 2007 May; 27(9):3542-55. PubMed ID: 17339337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53.
    Honda R; Yasuda H
    EMBO J; 1999 Jan; 18(1):22-7. PubMed ID: 9878046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p38 Mitogen-activated protein kinase mediates hypoxic regulation of Mdm2 and p53 in neurons.
    Zhu Y; Mao XO; Sun Y; Xia Z; Greenberg DA
    J Biol Chem; 2002 Jun; 277(25):22909-14. PubMed ID: 11948180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p53 phosphorylation and association with murine double minute 2, c-Jun NH2-terminal kinase, p14ARF, and p300/CBP during the cell cycle and after exposure to ultraviolet irradiation.
    Buschmann T; Adler V; Matusevich E; Fuchs SY; Ronai Z
    Cancer Res; 2000 Feb; 60(4):896-900. PubMed ID: 10706102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Myc-dependent apoptosis by p53, c-Jun N-terminal kinases/stress-activated protein kinases, and Mdm-2.
    Yu K; Ravera CP; Chen YN; McMahon G
    Cell Growth Differ; 1997 Jul; 8(7):731-42. PubMed ID: 9218867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation-dependent phosphorylation of p53.
    Adler V; Pincus MR; Minamoto T; Fuchs SY; Bluth MJ; Brandt-Rauf PW; Friedman FK; Robinson RC; Chen JM; Wang XW; Harris CC; Ronai Z
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1686-91. PubMed ID: 9050839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cytoprotective aminothiol WR1065 activates p53 through a non-genotoxic signaling pathway involving c-Jun N-terminal kinase.
    Pluquet O; North S; Bhoumik A; Dimas K; Ronai Z; Hainaut P
    J Biol Chem; 2003 Apr; 278(14):11879-87. PubMed ID: 12531896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different effects of p14ARF on the levels of ubiquitinated p53 and Mdm2 in vivo.
    Xirodimas D; Saville MK; Edling C; Lane DP; LaĆ­n S
    Oncogene; 2001 Aug; 20(36):4972-83. PubMed ID: 11526482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of sequence elements involved in p53 stability regulation reveals cell type dependence for p53 degradation.
    Hengstermann A; Whitaker NJ; Zimmer D; Zentgraf H; Scheffner M
    Oncogene; 1998 Dec; 17(22):2933-41. PubMed ID: 9879999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA damage-induced phosphorylation of MdmX at serine 367 activates p53 by targeting MdmX for Mdm2-dependent degradation.
    Okamoto K; Kashima K; Pereg Y; Ishida M; Yamazaki S; Nota A; Teunisse A; Migliorini D; Kitabayashi I; Marine JC; Prives C; Shiloh Y; Jochemsen AG; Taya Y
    Mol Cell Biol; 2005 Nov; 25(21):9608-20. PubMed ID: 16227609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation.
    Zhou BP; Liao Y; Xia W; Zou Y; Spohn B; Hung MC
    Nat Cell Biol; 2001 Nov; 3(11):973-82. PubMed ID: 11715018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MDM2-dependent ubiquitination of nuclear and cytoplasmic P53.
    Yu ZK; Geyer RK; Maki CG
    Oncogene; 2000 Nov; 19(51):5892-7. PubMed ID: 11127820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53.
    Buschmann T; Fuchs SY; Lee CG; Pan ZQ; Ronai Z
    Cell; 2000 Jun; 101(7):753-62. PubMed ID: 10892746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.