BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9732451)

  • 81. Phylogeny of the Neotropical killifish family Rivulidae (Cyprinodontiformes, Aplocheiloidei) inferred from mitochondrial DNA sequences.
    Murphy WJ; Thomerson JE; Collier GE
    Mol Phylogenet Evol; 1999 Nov; 13(2):289-301. PubMed ID: 10603257
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Phylogenetic relationships in the bovid subfamily Antilopinae based on mitochondrial DNA sequences.
    Rebholz W; Harley E
    Mol Phylogenet Evol; 1999 Jul; 12(2):87-94. PubMed ID: 10381312
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae).
    Sunnucks P; Hales DF
    Mol Biol Evol; 1996 Mar; 13(3):510-24. PubMed ID: 8742640
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Current intraspecific dynamics of sequence evolution differs from long-term trends and can account for the AT-richness of honeybee mitochondrial DNA.
    Koulianos S; Crozier RH
    J Mol Evol; 1999 Jul; 49(1):44-8. PubMed ID: 10368433
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Molecular phylogeny of grey mullets based on mitochondrial DNA sequence analysis: evidence of a differential rate of evolution at the intrafamily level.
    Caldara F; Bargelloni L; Ostellari L; Penzo E; Colombo L; Patarnello T
    Mol Phylogenet Evol; 1996 Dec; 6(3):416-24. PubMed ID: 8975696
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Directional substitution and evolution of nucleotide content in the cytochrome oxidase II gene in earwigs (dermapteran insects).
    Wirth T; Le Guellec R; Veuille M
    Mol Biol Evol; 1999 Dec; 16(12):1645-53. PubMed ID: 10605107
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The nucleotide sequence of a 3.2 kb segment of mitochondrial maxicircle DNA from Crithidia fasciculata containing the gene for cytochrome oxidase subunit III, the N-terminal part of the apocytochrome b gene and a possible frameshift gene; further evidence for the use of unusual initiator triplets in trypanosome mitochondria.
    Sloof P; van den Burg J; Voogd A; Benne R
    Nucleic Acids Res; 1987 Jan; 15(1):51-65. PubMed ID: 3029678
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A phylogenetic view on species radiation in Apodemus inferred from variation of nuclear and mitochondrial genes.
    Serizawa K; Suzuki H; Tsuchiya K
    Biochem Genet; 2000 Feb; 38(1-2):27-40. PubMed ID: 10862357
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Phylogenetic positions of insectivora in eutheria inferred from mitochondrial cytochrome c oxidase subunit II gene.
    Onuma M; Kusakabe T; Kusakabe S
    Zoolog Sci; 1998 Feb; 15(1):139-45. PubMed ID: 9615624
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Widespread and extensive editing of mitochondrial mRNAS in dinoflagellates.
    Lin S; Zhang H; Spencer DF; Norman JE; Gray MW
    J Mol Biol; 2002 Jul; 320(4):727-39. PubMed ID: 12095251
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A mitochondrial cytochrome B phylogeny of the Alectoris partridges.
    Randi E
    Mol Phylogenet Evol; 1996 Oct; 6(2):214-27. PubMed ID: 8899724
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Evolutionary trends of the mitochondrial lineage differentiation in species of genera Martes and Mustela.
    Hosoda T; Suzuki H; Harada M; Tsuchiya K; Han SH; Zhang Y; Kryukov AP; Lin LK
    Genes Genet Syst; 2000 Oct; 75(5):259-67. PubMed ID: 11245219
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Disparate rates of molecular evolution in cospeciating hosts and parasites.
    Hafner MS; Sudman PD; Villablanca FX; Spradling TA; Demastes JW; Nadler SA
    Science; 1994 Aug; 265(5175):1087-90. PubMed ID: 8066445
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Phylogenetic utility of the mitochondrial cytochrome oxidase gene: molecular evolution of the Drosophila buzzatii species complex.
    Spicer GS
    J Mol Evol; 1995 Dec; 41(6):749-59. PubMed ID: 8587120
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The 'evolutionary signal' of homoplasy in protein-coding gene sequences and its consequences for a priori weighting in phylogeny.
    Hassanin A; Lecointre G; Tillier S
    C R Acad Sci III; 1998 Jul; 321(7):611-20. PubMed ID: 10877601
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The accelerated evolution of human cytochrome c oxidase - Selection for reduced rate and proton pumping efficiency?
    Rottenberg H
    Biochim Biophys Acta Bioenerg; 2022 Nov; 1863(8):148595. PubMed ID: 35850262
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Evolution of the couple cytochrome c and cytochrome c oxidase in primates.
    Pierron D; Wildman DE; Hüttemann M; Letellier T; Grossman LI
    Adv Exp Med Biol; 2012; 748():185-213. PubMed ID: 22729859
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Population variability in Chironomus (Camptochironomus) species (Diptera, Nematocera) with a Holarctic distribution: evidence of mitochondrial gene flow.
    Martin J; Guryev V; Blinov A
    Insect Mol Biol; 2002 Oct; 11(5):387-97. PubMed ID: 12230538
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Control region length dynamics potentially drives amino acid evolution in tarsier mitochondrial genomes.
    Merker S; Thomas S; Völker E; Perwitasari-Farajallah D; Feldmeyer B; Streit B; Pfenninger M
    J Mol Evol; 2014 Aug; 79(1-2):40-51. PubMed ID: 25008552
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria.
    Foster PG; Jermiin LS; Hickey DA
    J Mol Evol; 1997 Mar; 44(3):282-8. PubMed ID: 9060394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.