BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9732451)

  • 101. Thermodynamic stability explains the differential evolutionary dynamics of cytochrome b and COX I in mammals.
    Aledo JC; Valverde H; Ruíz-Camacho M
    J Mol Evol; 2012 Feb; 74(1-2):69-80. PubMed ID: 22362464
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Parallel evolution of IDH2 gene in cetaceans, primates and bats.
    Ai WM; Chen SB; Chen X; Shen XJ; Shen YY
    FEBS Lett; 2014 Jan; 588(3):450-4. PubMed ID: 24374336
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Accelerated Evolution of Cytochrome
    Brand SE; Scharlau M; Geren L; Hendrix M; Parson C; Elmendorf T; Neel E; Pianalto K; Silva-Nash J; Durham B; Millett F
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552779
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Silencing, positive selection and parallel evolution: busy history of primate cytochromes C.
    Pierron D; Opazo JC; Heiske M; Papper Z; Uddin M; Chand G; Wildman DE; Romero R; Goodman M; Grossman LI
    PLoS One; 2011; 6(10):e26269. PubMed ID: 22028846
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation.
    Jobson RW; Nielsen R; Laakkonen L; Wikström M; Albert VA
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):18064-8. PubMed ID: 15596720
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Temporal dynamics of mildly deleterious nonsynonymous substitutions in mitochondrial gene sequences in rodents and moles.
    Inoue Y; Suzuki H
    Genes Genet Syst; 2022 Oct; 97(3):111-121. PubMed ID: 35753758
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Phylogeny and molecular evolution in primates.
    Hasegawa M
    Jpn J Genet; 1990 Aug; 65(4):243-66. PubMed ID: 2223159
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Contingency tests of neutrality using intra/interspecific gene trees: the rejection of neutrality for the evolution of the mitochondrial cytochrome oxidase II gene in the hominoid primates.
    Templeton AR
    Genetics; 1996 Nov; 144(3):1263-70. PubMed ID: 8913766
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Simple methods for testing the molecular evolutionary clock hypothesis.
    Tajima F
    Genetics; 1993 Oct; 135(2):599-607. PubMed ID: 8244016
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Estimation of the transition/transversion rate bias and species sampling.
    Yang Z; Yoder AD
    J Mol Evol; 1999 Mar; 48(3):274-83. PubMed ID: 10093216
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Natural TWIST protein variants in a panel of eleven non-human primates: possible implications of TWIST gene-tree for primate species tree.
    Gachot-Neveu H; Stoetzel C; Quillet R; Dollfus H; Perrin-Schmitt F
    Dev Genes Evol; 2002 Nov; 212(10):496-503. PubMed ID: 12523351
    [TBL] [Abstract][Full Text] [Related]  

  • 112. An ancestral genomic sequence that serves as a nucleation site for de novo gene birth.
    Delihas N
    PLoS One; 2022; 17(5):e0267864. PubMed ID: 35552551
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Comparative primate genomics.
    Enard W; Paabo S
    Annu Rev Genomics Hum Genet; 2004; 5():351-78. PubMed ID: 15485353
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Partial mtDNA sequencing data of vulnerable
    Zahidin MA; Jalil NA; Naharuddin NM; Abd Rahman MR; Gani M; Abdullah MT
    Data Brief; 2019 Aug; 25():104133. PubMed ID: 31321260
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Polymorphism in the mitochondrial cytochrome B gene in Koreans. An additional marker for individual identification.
    Lee SD; Lee YS; Lee JB
    Int J Legal Med; 2002 Apr; 116(2):74-8. PubMed ID: 12056524
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Lineage-specific accelerated sequences underlying primate evolution.
    Bi X; Zhou L; Zhang JJ; Feng S; Hu M; Cooper DN; Lin J; Li J; Wu DD; Zhang G
    Sci Adv; 2023 Jun; 9(22):eadc9507. PubMed ID: 37262186
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Adaptive evolution and functional redesign of core metabolic proteins in snakes.
    Castoe TA; Jiang ZJ; Gu W; Wang ZO; Pollock DD
    PLoS One; 2008 May; 3(5):e2201. PubMed ID: 18493604
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Are megabats flying primates? Contrary evidence from a mitochondrial DNA sequence.
    Bennett S; Alexander LJ; Crozier RH; Mackinlay AG
    Aust J Biol Sci; 1988; 41(3):327-32. PubMed ID: 3270500
    [No Abstract]   [Full Text] [Related]  

  • 119. Genomic signatures of diet-related shifts during human origins.
    Babbitt CC; Warner LR; Fedrigo O; Wall CE; Wray GA
    Proc Biol Sci; 2011 Apr; 278(1708):961-9. PubMed ID: 21177690
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Ancient insights into uric acid metabolism in primates.
    Chang BS
    Proc Natl Acad Sci U S A; 2014 Mar; 111(10):3657-8. PubMed ID: 24556992
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.