BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 9733090)

  • 1. Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon.
    Barja G; Herrero A
    J Bioenerg Biomembr; 1998 Jun; 30(3):235-43. PubMed ID: 9733090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon.
    Herrero A; Barja G
    Mech Ageing Dev; 1997 Nov; 98(2):95-111. PubMed ID: 9379714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADP-regulation of mitochondrial free radical production is different with complex I- or complex II-linked substrates: implications for the exercise paradox and brain hypermetabolism.
    Herrero A; Barja G
    J Bioenerg Biomembr; 1997 Jun; 29(3):241-9. PubMed ID: 9298709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial free radical production and aging in mammals and birds.
    Barja G
    Ann N Y Acad Sci; 1998 Nov; 854():224-38. PubMed ID: 9928433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds.
    Barja G; Cadenas S; Rojas C; Pérez-Campo R; López-Torres M
    Free Radic Res; 1994 Oct; 21(5):317-27. PubMed ID: 7842141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress.
    Gyulkhandanyan AV; Pennefather PS
    J Neurochem; 2004 Jul; 90(2):405-21. PubMed ID: 15228597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria.
    Caro P; Gomez J; Sanchez I; Naudi A; Ayala V; López-Torres M; Pamplona R; Barja G
    Rejuvenation Res; 2009 Dec; 12(6):421-34. PubMed ID: 20041736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria.
    Davey GP; Clark JB
    J Neurochem; 1996 Apr; 66(4):1617-24. PubMed ID: 8627318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of resveratrol on the rat brain respiratory chain.
    Zini R; Morin C; Bertelli A; Bertelli AA; Tillement JP
    Drugs Exp Clin Res; 1999; 25(2-3):87-97. PubMed ID: 10370869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria.
    Herrero A; Barja G
    J Bioenerg Biomembr; 2000 Dec; 32(6):609-15. PubMed ID: 15254374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach.
    Perez-Campo R; López-Torres M; Cadenas S; Rojas C; Barja G
    J Comp Physiol B; 1998 Apr; 168(3):149-58. PubMed ID: 9591361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low fatty acid unsaturation protects against lipid peroxidation in liver mitochondria from long-lived species: the pigeon and human case.
    Pamplona R; Prat J; Cadenas S; Rojas C; Pérez-Campo R; López Torres M; Barja G
    Mech Ageing Dev; 1996 Jan; 86(1):53-66. PubMed ID: 8866736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration.
    Dykens JA
    J Neurochem; 1994 Aug; 63(2):584-91. PubMed ID: 8035183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of training on H(2)O(2) release by mitochondria from rat skeletal muscle.
    Venditti P; Masullo P; Di Meo S
    Arch Biochem Biophys; 1999 Dec; 372(2):315-20. PubMed ID: 10600170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-dependent changes in pyruvate uptake by nonsynaptic and synaptic mitochondria from rat brain.
    Deshmukh DR; Patel MS
    Mech Ageing Dev; 1982 Dec; 20(4):343-51. PubMed ID: 6300572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of cytotoxicity of paraquat. I. NADH oxidation and paraquat radical formation via complex I.
    Fukushima T; Yamada K; Isobe A; Shiwaku K; Yamane Y
    Exp Toxicol Pathol; 1993 Oct; 45(5-6):345-9. PubMed ID: 8312721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes.
    Bolter CJ; Chefurka W
    Arch Biochem Biophys; 1990 Apr; 278(1):65-72. PubMed ID: 2321971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity.
    Barja G
    J Bioenerg Biomembr; 1999 Aug; 31(4):347-66. PubMed ID: 10665525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia.
    Cino M; Del Maestro RF
    Arch Biochem Biophys; 1989 Mar; 269(2):623-38. PubMed ID: 2919886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.