These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9733208)

  • 1. Rhinal cortex ablations fail to disrupt reinforcer devaluation effects in rhesus monkeys (Macaca mulatta).
    Thornton JA; Malkova L; Murray EA
    Behav Neurosci; 1998 Aug; 112(4):1020-5. PubMed ID: 9733208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhinal cortex lesions produce mild deficits in visual discrimination learning for an auditory secondary reinforcer in rhesus monkeys.
    Baxter MG; Hadfield WS; Murray EA
    Behav Neurosci; 1999 Apr; 113(2):243-52. PubMed ID: 10357449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys.
    Málková L; Gaffan D; Murray EA
    J Neurosci; 1997 Aug; 17(15):6011-20. PubMed ID: 9221797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anterior rhinal cortex and amygdala: dissociation of their contributions to memory and food preference in rhesus monkeys.
    Murray EA; Gaffan EA; Flint RW
    Behav Neurosci; 1996 Feb; 110(1):30-42. PubMed ID: 8652070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural substrates of crossmodal association memory in monkeys: the amygdala versus the anterior rhinal cortex.
    Goulet S; Murray EA
    Behav Neurosci; 2001 Apr; 115(2):271-84. PubMed ID: 11345954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspiration lesions of the amygdala disrupt the rhinal corticothalamic projection system in rhesus monkeys.
    Goulet S; Doré FY; Murray EA
    Exp Brain Res; 1998 Mar; 119(2):131-40. PubMed ID: 9535562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhinal cortex removal produces amnesia for preoperatively learned discrimination problems but fails to disrupt postoperative acquisition and retention in rhesus monkeys.
    Thornton JA; Rothblat LA; Murray EA
    J Neurosci; 1997 Nov; 17(21):8536-49. PubMed ID: 9334426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampal lesions in rhesus monkeys disrupt emotional responses but not reinforcer devaluation effects.
    Chudasama Y; Wright KS; Murray EA
    Biol Psychiatry; 2008 Jun; 63(11):1084-91. PubMed ID: 18191111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monkeys with rhinal cortex damage or neurotoxic hippocampal lesions are impaired on spatial scene learning and object reversals.
    Murray EA; Baxter MG; Gaffan D
    Behav Neurosci; 1998 Dec; 112(6):1291-303. PubMed ID: 9926813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional interaction of medial mediodorsal thalamic nucleus but not nucleus accumbens with amygdala and orbital prefrontal cortex is essential for adaptive response selection after reinforcer devaluation.
    Izquierdo A; Murray EA
    J Neurosci; 2010 Jan; 30(2):661-9. PubMed ID: 20071531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient inactivation of orbitofrontal cortex blocks reinforcer devaluation in macaques.
    West EA; DesJardin JT; Gale K; Malkova L
    J Neurosci; 2011 Oct; 31(42):15128-35. PubMed ID: 22016546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of emotional responses in monkeys with rhinal cortex or amygdala lesions.
    Meunier M; Bachevalier J
    Emotion; 2002 Jun; 2(2):147-61. PubMed ID: 12899188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency.
    Izquierdo A; Suda RK; Murray EA
    J Neurosci; 2004 Aug; 24(34):7540-8. PubMed ID: 15329401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotoxic lesions of the medial mediodorsal nucleus of the thalamus disrupt reinforcer devaluation effects in rhesus monkeys.
    Mitchell AS; Browning PG; Baxter MG
    J Neurosci; 2007 Oct; 27(42):11289-95. PubMed ID: 17942723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys.
    Meunier M; Bachevalier J; Mishkin M; Murray EA
    J Neurosci; 1993 Dec; 13(12):5418-32. PubMed ID: 8254384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined unilateral lesions of the amygdala and orbital prefrontal cortex impair affective processing in rhesus monkeys.
    Izquierdo A; Murray EA
    J Neurophysiol; 2004 May; 91(5):2023-39. PubMed ID: 14711973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of rhinal cortex lesions combined with hippocampectomy on visual recognition memory in rhesus monkeys.
    Meunier M; Hadfield W; Bachevalier J; Murray EA
    J Neurophysiol; 1996 Mar; 75(3):1190-205. PubMed ID: 8867128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning.
    Izquierdo A; Murray EA
    J Neurosci; 2007 Jan; 27(5):1054-62. PubMed ID: 17267559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impairments in visual discrimination learning and recognition memory produced by neurotoxic lesions of rhinal cortex in rhesus monkeys.
    Baxter MG; Murray EA
    Eur J Neurosci; 2001 Mar; 13(6):1228-38. PubMed ID: 11285020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates.
    Machado CJ; Bachevalier J
    Eur J Neurosci; 2007 May; 25(9):2885-904. PubMed ID: 17561849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.