These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 9733223)

  • 1. Association between secondary flow in models of the aorto-celiac junction and subendothelial macrophages in the normal rabbit.
    Malinauskas RA; Sarraf P; Barber KM; Truskey GA
    Atherosclerosis; 1998 Sep; 140(1):121-34. PubMed ID: 9733223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction.
    Buchanan JR; Kleinstreuer C; Truskey GA; Lei M
    Atherosclerosis; 1999 Mar; 143(1):27-40. PubMed ID: 10208478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of sites with elevated LDL permeability at intercostal, celiac, and iliac branches of the normal rabbit aorta.
    Herrmann RA; Malinauskas RA; Truskey GA
    Arterioscler Thromb; 1994 Feb; 14(2):313-23. PubMed ID: 8305425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational study of the effect of geometric and flow parameters on the steady flow field at the rabbit aorto-celiac bifurcation.
    Cheer AY; Dwyer HA; Barakat AI; Sy E; Bice M
    Biorheology; 1998; 35(6):415-35. PubMed ID: 10656050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of celiac and renal artery outflows on near-wall velocities in the porcine iliac arteries.
    Clingan PA; Friedman MH
    Ann Biomed Eng; 2000 Mar; 28(3):302-8. PubMed ID: 10784094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation between near-wall residence times of monocytes and early lesion growth in the rabbit aorto-celiac junction.
    Longest PW; Kleinstreuer C; Truskey GA; Buchanan JR
    Ann Biomed Eng; 2003 Jan; 31(1):53-64. PubMed ID: 12572656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of steady and pulsatile flow in a double branching arterial model.
    Lutz RJ; Hsu L; Menawat A; Zrubek J; Edwards K
    J Biomech; 1983; 16(9):753-66. PubMed ID: 6643546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - II. Abdominal aorta.
    Endo S; Goldsmith HL; Karino T
    Biorheology; 2014; 51(4-5):257-74. PubMed ID: 25281597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamics and low density lipoprotein metabolism. Rates of low density lipoprotein incorporation and degradation along medial and lateral walls of the rabbit aorto-iliac bifurcation.
    Berceli SA; Warty VS; Sheppeck RA; Mandarino WA; Tanksale SK; Borovetz HS
    Arteriosclerosis; 1990; 10(5):686-94. PubMed ID: 2403296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The distribution of intimal white blood cells in the normal rabbit aorta.
    Malinauskas RA; Herrmann RA; Truskey GA
    Atherosclerosis; 1995 Jun; 115(2):147-63. PubMed ID: 7661874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches.
    Lee D; Chen JY
    J Biomech; 2002 Aug; 35(8):1115-22. PubMed ID: 12126670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcinematographic studies of flow patterns in the excised rabbit aorta and its major branches.
    Barakat AI; Karino T; Colton CK
    Biorheology; 1997; 34(3):195-221. PubMed ID: 9474263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Reynolds number and flow division on patterns of haemodynamic wall shear stress near branch points in the descending thoracic aorta.
    Kazakidi A; Sherwin SJ; Weinberg PD
    J R Soc Interface; 2009 Jun; 6(35):539-48. PubMed ID: 18812285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow patterns at the major T-junctions of the dog descending aorta.
    Karino T; Motomiya M; Goldsmith HL
    J Biomech; 1990; 23(6):537-48. PubMed ID: 2341417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focal increases in vascular cell adhesion molecule-1 and intimal macrophages at atherosclerosis-susceptible sites in the rabbit aorta after short-term cholesterol feeding.
    Truskey GA; Herrmann RA; Kait J; Barber KM
    Arterioscler Thromb Vasc Biol; 1999 Feb; 19(2):393-401. PubMed ID: 9974424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of wall shear stress on the morphology and permeability of endothelial cells in stenotic rabbit abdominal aorta].
    Wu Y; Deng X; Zhen X; Wang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):225-9. PubMed ID: 15884523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity of rabbit aortic endothelial cells, with special reference to phagocytosis.
    Emura S; Masuko S; Sunaga T
    Angiology; 1992 Jul; 43(7):599-605. PubMed ID: 1626739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine structures around the orifice of the intercostal artery of the rabbit thoracic aorta.
    Emura S; Masuko S; Sunaga T
    Angiology; 1992 Mar; 43(3 Pt 1):211-8. PubMed ID: 1575369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of tilting disk, heart valve orientation on flow through a curved aortic model.
    Walker JD; Tiederman WG; Phillips WM
    J Biomech Eng; 1989 Aug; 111(3):229-32. PubMed ID: 2779188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.