These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9733506)

  • 1. Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface.
    Xu XH; Yeung ES
    Science; 1998 Sep; 281(5383):1650-3. PubMed ID: 9733506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of single-protein molecules at a liquid/solid interface: implications in capillary electrophoresis and chromatography.
    Kang SH; Yeung ES
    Anal Chem; 2002 Dec; 74(24):6334-9. PubMed ID: 12510756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface.
    Kisley L; Poongavanam MV; Kourentzi K; Willson RC; Landes CF
    J Sep Sci; 2016 Feb; 39(4):682-8. PubMed ID: 26377146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time dynamics of single-DNA molecules undergoing adsorption and desorption at liquid-solid interfaces.
    Kang SH; Shortreed MR; Yeung ES
    Anal Chem; 2001 Mar; 73(6):1091-9. PubMed ID: 11305636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial biocatalysis on charged and immobilized substrates: the roles of enzyme and substrate surface charge.
    Feller BE; Kellis JT; Cascão-Pereira LG; Robertson CR; Frank CW
    Langmuir; 2011 Jan; 27(1):250-63. PubMed ID: 21128607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic Interactions Influence Protein Adsorption (but Not Desorption) at the Silica-Aqueous Interface.
    McUmber AC; Randolph TW; Schwartz DK
    J Phys Chem Lett; 2015 Jul; 6(13):2583-7. PubMed ID: 26266737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme.
    van der Veen M; Norde W; Stuart MC
    Colloids Surf B Biointerfaces; 2004 May; 35(1):33-40. PubMed ID: 15261053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule fluorescence imaging of DNA at a potential-controlled interface.
    Peterson EM; Harris JM
    Langmuir; 2013 Jul; 29(26):8292-301. PubMed ID: 23741971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion of single DNA molecules at a liquid-solid interface as revealed by variable-angle evanescent-field microscopy.
    He Y; Li HW; Yeung ES
    J Phys Chem B; 2005 May; 109(18):8820-32. PubMed ID: 16852048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis.
    Feller BE; Kellis JT; Cascão-Pereira LG; Robertson CR; Frank CW
    Langmuir; 2010 Dec; 26(24):18916-25. PubMed ID: 21080656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoelectric Points of Proteins at the Air/Liquid Interface and in Solution.
    Guckeisen T; Hosseinpour S; Peukert W
    Langmuir; 2019 Apr; 35(14):5004-5012. PubMed ID: 30892047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of bovine serum albumin on fused silica: Elucidation of protein-protein interactions by single-molecule fluorescence microscopy.
    Yeung KM; Lu ZJ; Cheung NH
    Colloids Surf B Biointerfaces; 2009 Mar; 69(2):246-50. PubMed ID: 19118986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-liquid interfacial energy as a tool to estimate shifts in isoelectric points of adsorbed proteins on solid surfaces.
    Maheshwari R; Bhavani R; Dhathathreyan A
    J Colloid Interface Sci; 2006 Jan; 293(2):500-4. PubMed ID: 16102778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-coated beta-ferric hydrous oxide particles. An electrokinetic and electrooptic study.
    Dobrikova AG; Dimitrov MI; Taneva SG; Petkanchin IB
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):114-20. PubMed ID: 17207973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption effectiveness of β-lactoglobulin onto gold surface determined by quartz crystal microbalance.
    Jachimska B; Świątek S; Loch JI; Lewiński K; Luxbacher T
    Bioelectrochemistry; 2018 Jun; 121():95-104. PubMed ID: 29413868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between interfacial forces measured by colloid-probe atomic force microscopy and protein resistance of poly(ethylene glycol)-grafted poly(L-lysine) adlayers on niobia surfaces.
    Pasche S; Textor M; Meagher L; Spencer ND; Griesser HJ
    Langmuir; 2005 Jul; 21(14):6508-20. PubMed ID: 15982060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption/Desorption Transition of Recombinant Human Neurotrophin 4: Physicochemical Characterization.
    Dąbkowska M; Adamczak M; Barbasz J; Cieśla M; Machaliński B
    Langmuir; 2017 Sep; 33(38):9548-9557. PubMed ID: 28825842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of quartz crystal microbalance to study the impact of pH and ionic strength on protein-silicone oil interactions.
    Dixit N; Maloney KM; Kalonia DS
    Int J Pharm; 2011 Jun; 412(1-2):20-7. PubMed ID: 21497645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent immobilization of proteins to N-hydroxysuccinimide ester derivatives of agarose. Effect of protein charge on immobilization.
    Frost RG; Monthony JF; Engelhorn SC; Siebert CJ
    Biochim Biophys Acta; 1981 Sep; 670(2):163-9. PubMed ID: 6170343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.