BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 9733519)

  • 1. Prevention of cardiac hypertrophy in mice by calcineurin inhibition.
    Sussman MA; Lim HW; Gude N; Taigen T; Olson EN; Robbins J; Colbert MC; Gualberto A; Wieczorek DF; Molkentin JD
    Science; 1998 Sep; 281(5383):1690-3. PubMed ID: 9733519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo.
    De Windt LJ; Lim HW; Bueno OF; Liang Q; Delling U; Braz JC; Glascock BJ; Kimball TF; del Monte F; Hajjar RJ; Molkentin JD
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3322-7. PubMed ID: 11248077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression patterns in transgenic mouse models of hypertrophic cardiomyopathy caused by mutations in myosin regulatory light chain.
    Huang W; Kazmierczak K; Zhou Z; Aguiar-Pulido V; Narasimhan G; Szczesna-Cordary D
    Arch Biochem Biophys; 2016 Jul; 601():121-32. PubMed ID: 26906074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of calcineurin signaling during development.
    Tucker Edmister S; Creton R
    Dev Neurobiol; 2022 Sep; 82(6):505-516. PubMed ID: 35785416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remodeling the cardiac transcriptional landscape with diet.
    Luczak ED; Barthel KK; Stauffer BL; Konhilas JP; Cheung TH; Leinwand LA
    Physiol Genomics; 2011 Jun; 43(12):772-80. PubMed ID: 21487031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review.
    Zhang L; Xie F; Zhang F; Lu B
    Medicine (Baltimore); 2024 Apr; 103(17):e37994. PubMed ID: 38669371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stage-specific therapy for hypertrophic cardiomyopathy.
    Argirò A; Zampieri M; Marchi A; Cappelli F; Del Franco A; Mazzoni C; Cecchi F; Olivotto I
    Eur Heart J Suppl; 2023 May; 25(Suppl C):C155-C161. PubMed ID: 37125313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiovascular effects of immunosuppression agents.
    Elezaby A; Dexheimer R; Sallam K
    Front Cardiovasc Med; 2022; 9():981838. PubMed ID: 36211586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Kinase D1 Regulates Cardiac Hypertrophy, Potassium Channel Remodeling, and Arrhythmias in Heart Failure.
    Bossuyt J; Borst JM; Verberckmoes M; Bailey LRJ; Bers DM; Hegyi B
    J Am Heart Assoc; 2022 Oct; 11(19):e027573. PubMed ID: 36172952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging therapeutic targets for cardiac hypertrophy.
    Winkle AJ; Nassal DM; Shaheen R; Thomas E; Mohta S; Gratz D; Weinberg SH; Hund TJ
    Expert Opin Ther Targets; 2022 Jan; 26(1):29-40. PubMed ID: 35076342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of Calcineurin Biophysics with Implications for Cardiac Physiology.
    Williams RB; Johnson CN
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Between Inflammation and Autophagy: The Role of Leptin-Adiponectin Axis in Cardiac Remodeling.
    Kamareddine L; Ghantous CM; Allouch S; Al-Ashmar SA; Anlar G; Kannan S; Djouhri L; Korashy HM; Agouni A; Zeidan A
    J Inflamm Res; 2021; 14():5349-5365. PubMed ID: 34703273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcineurin in the heart: New horizons for an old friend.
    Chaklader M; Rothermel BA
    Cell Signal; 2021 Nov; 87():110134. PubMed ID: 34454008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A peptide of the N terminus of GRK5 attenuates pressure-overload hypertrophy and heart failure.
    Coleman RC; Eguchi A; Lieu M; Roy R; Barr EW; Ibetti J; Lucchese AM; Peluzzo AM; Gresham K; Chuprun JK; Koch WJ
    Sci Signal; 2021 Mar; 14(676):. PubMed ID: 33785612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RCAN1 in cardiovascular diseases: molecular mechanisms and a potential therapeutic target.
    Wang S; Wang Y; Qiu K; Zhu J; Wu Y
    Mol Med; 2020 Dec; 26(1):118. PubMed ID: 33267791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NULP1 Alleviates Cardiac Hypertrophy by Suppressing NFAT3 Transcriptional Activity.
    Zhang X; Lei F; Wang XM; Deng KQ; Ji YX; Zhang Y; Li H; Zhang XD; Lu Z; Zhang P
    J Am Heart Assoc; 2020 Aug; 9(16):e016419. PubMed ID: 32805187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological Abnormalities in VLCAD Deficient hiPSC-Cardiomyocytes Can Be Improved by Lowering Accumulation of Fatty Acid Oxidation Intermediates.
    Knottnerus SJG; Mengarelli I; Wüst RCI; Baartscheer A; Bleeker JC; Coronel R; Ferdinandusse S; Guan K; IJlst L; Li W; Luo X; Portero VM; Ulbricht Y; Visser G; Wanders RJA; Wijburg FA; Verkerk AO; Houtkooper RH; Bezzina CR
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32276429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart Plasticity in Response to Pressure- and Volume-Overload: A Review of Findings in Compensated and Decompensated Phenotypes.
    Pitoulis FG; Terracciano CM
    Front Physiol; 2020; 11():92. PubMed ID: 32116796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of CyPA in cardiac hypertrophy and remodeling.
    Cao M; Yuan W; Peng M; Mao Z; Zhao Q; Sun X; Yan J
    Biosci Rep; 2019 Dec; 39(12):. PubMed ID: 31825469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium Signaling in Cardiomyocyte Function.
    Gilbert G; Demydenko K; Dries E; Puertas RD; Jin X; Sipido K; Roderick HL
    Cold Spring Harb Perspect Biol; 2020 Mar; 12(3):. PubMed ID: 31308143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.